
Deep	Learning
CMPT	733
Spring	2017
Apala	Guha



2



Deep	Learning	Platforms

• Caffe – BVLC
• AlexNet – U	Toronto
• convNet.js – browser-based
• CaffeonSpark - Yahoo
• TensorFlow - Google
• DaDianNao
• TrueNorth – IBM
• CuDNN – Nvidia
• DeepLearning4j,	Keras,	Theano

3



Neural	Networks

4



Convolutional	Neural	Networks

5



Convnet Layers

• convolution	layer	– detects	input	features

• pooling	layer	– subsamples	input

• fully	connected	layer	– makes	classification	decisions	as	a	whole

6



Convolution	Layer

• Kernel	forms	dot	products	
with	different	regions	of	input	
and	produces	activation	maps

• Kernel	may	skip	over	rows	and	
columns	(striding)	when	
sliding	over	input

• Kernel	=	neuron	=>	neurons	
with	same	weights	consume	
different	areas	of	input

7



Visualizing	convolution	layer	- Kernels

8



Convolution	Layer	

• Activation	is	a	measure	of	the	
presence	of	the	kernel	feature	at	
a	specific	location	in	the	input

• Typically	we	are	only	interested	
in	positive	activation	values

• ReLU is	applied	to	activation	
maps	to	suppress	negative	
activation

9



Convolution	Layer

• Inputs	have	depth	(e.g.	
color	channels	at	
lowest	layer)

• Kernel	convolves	
through	the	input	
depth

• The	depth	of	inputs	to	
higher	layers	is	due	to	
multiple	kernels

10



Visualizing	convolution	layer	- activation

11



Visualizing	convolution	layer	
– images	that	most	activate	a	kernel

12



Convolutional	Neural	Networks

13



Pooling	Layer

14

• Reduces	the	size	of	the	
output	of	convolution	layers

• Different	types	possible
• max	pooling
• average	pooling
• sum	pooling



Convolutional	Neural	Networks

15



Fully	connected	layer

• Similar	to	convolution	layer	but	processes	entire	input	together

• Form	the	last	few	layers	where	they	consider	all	combinations	of	
features	to	make	a	final	classification

• Sigmoid	function	(1	/	(1	+	e-z))	is	applied	at	the	output	of	FC	layer	to	
map	prediction	to	(0,	1)	probabilities	e.g.	(0.3,	0.5,	0.2,	0.4)

• Softmax (ez /	Σez)	function	is	then	applied	to	ensure	that	the	
probabilities	add	up	to	1	e.g.	(0.1,	0.1,	0.7,	0.1)

16



Learning	Task

• In	the	training	phase	we	learn	the	kernels

• Each	weight	in	a	kernel	has	a	gradient	on	the	final	cost	and	is	updated	
in	the	negative	direction	of	the	gradient	using	a	learning	rate

• Simple	example

17



Learning	task

• Let	kernel	=	gθ,	where	θ is	a	vector	of	weights

• Assuming	a	really	simple	CNN,	conv	->	ReLU ->	pool	->	FC

• final	prediction	=	softmax(conv(pool(ReLU(gθ(x)))))	
=	(0.1,	0.5,	0.1,	0.3),	for	example	for	4	classes

where	x	=	input	image

• We	want	predictions	that	are	more	confident	e.g.	(0.05,	0.8,	0.05,	0.5)

• In	the	training	phase,	we	have	examples	of	the	form	(0.0,	1.0,	0.0,	0.0)

• overall	cost	=	sum	of	the	cost	of	misprediction for	each	class

18



Learning	Task

• Cost	=	-(1/N)	Σi [	yilogpi +	(1	– yi)log(1-pi)	]
• yi =	belongs	to	class	i or	not	=>	{0,	1}
• pi =	predicted	probability	of	belonging	to	class	i
• Taking	a	log	of	the	prediction	rapidly	increases	cost	as	it	moves	away	from	correct	
answer

• ẟ Cost	/	ẟ θ =	ẟ cost(softmax(conv(pool(ReLU(gθ(x))))))	/	ẟ θ=	(ẟ cost(r)	/	ẟ r)	*	(ẟ r	/	ẟ θ)
=	(ẟ cost(r)	/	ẟ r)	*	(ẟ softmax(s)	*	ẟ s)	*	(ẟ s	/	ẟ θ)
=	…

• Note	that	ReLU and	pool	are	non-differentiable

• θ =	θ – (learning	rate)	*	ẟ Cost	/	ẟ θ

19


