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Due to deep learning,

we brought the vehicle’s
environment perception a
significant step closer to human
performance and exceeded the
performance of classic computer
vision.
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a baby elephant standing next to each other on a field
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a man doing a trick on a skateboard
a skateboarder is is mid air performing a stunt
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Deep Learning Platforms

e Caffe— BVLC

* AlexNet — U Toronto

* convNet.js — browser-based

e CaffeonSpark - Yahoo

* TensorFlow - Google

* DaDianNao

* TrueNorth - IBM

* CuDNN — Nvidia

* Deeplearningdj, Keras, Theano



Neural Networks

Input layer
hidden layer 1 hidden layer 2



Convolutional Neural Networks
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Convnet Layers

e convolution layer — detects input features
* pooling layer — subsamples input

* fully connected layer — makes classification decisions as a whole



Convolution Layer

Center clementof the kel is placed over the st * Kernelforms dot products
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Visualizing convolution layer - Kernels




Convolution Layer

 Activation is a measure of the
presence of the kernel feature at
a specific location in the input
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* Typically we are only interested
in positive activation values

* ReLU is applied to activation
maps to suppress negative
activation
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Convoluti

32

on Layer

* Inputs have depth (e.g.
color channels at
lowest layer)

e Kernel convolves
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* The depth of inputs to

higher layers is due to
/ multiple kernels
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Visualizing convolution \ayer activation




Visualizing convolution layer
— images that most activate a kernel
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Convolutional Neural Networks
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Pooling Layer

224x224x64 e Reduces the size of the

112x112x64 output of convolution layers

pool
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* Different types possible
* max pooling
l I * average pooling

e sum pooling
\
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downsampling
112
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Convolutional Neural Networks
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Fully connected layer

 Similar to convolution layer but processes entire input together

* Form the last few layers where they consider all combinations of
features to make a final classification

* Sigmoid function (1 / (1 + e%)) is applied at the output of FC layer to
map prediction to (0, 1) probabilities e.g. (0.3, 0.5, 0.2, 0.4)

» Softmax (e?/ Ze?) function is then applied to ensure that the
probabilities add up to 1 e.g. (0.1, 0.1, 0.7, 0.1)



Learning Task

* In the training phase we learn the kernels

* Each weight in a kernel has a gradient on the final cost and is updated
in the negative direction of the gradient using a learning rate

e Simple example



Learning task

* Let kernel = g5, where 0 is a vector of weights

e Assuming a really simple CNN, conv -> RelLU -> pool -> FC

* final prediction = softmax(conv(pool(ReLU(gq(x)))))
= (0.1, 0.5, 0.1, 0.3), for example for 4 classes
where x = input image

* We want predictions that are more confidente.g. (0.05, 0.8, 0.05, 0.5)
* In the training phase, we have examples of the form (0.0, 1.0, 0.0, 0.0)

 overall cost = sum of the cost of misprediction for each class



Learning Task

* Cost=-(1/N) ;[ yilogp; + (1~ y;)log(1-p)) ]
* y; = belongs to classi or not => {0, 1}
* p; = predicted probability of belonging to class i

* Taking a log of the prediction rapidlyincreases cost as it moves away from correct
answer

* ODCost/D 0= 66ccc)cs;’§§cscr)f’;rr61arx(gogvr(9060Ie()ReLU(ge(x)))))) /OB
O costm /O r; * (0 softmax(s) *0s) *(0s/ 0 0)

* Note that ReLU and pool are non-differentiable

* 8 =0- (learning rate) * d Cost /0 6



