
Movie	Recommendation	–
Collaborative	Filtering

CMPT	733
Spring	2017
Apala	Guha



Users

Preferences
• rating,	vote,	follow
• review
• click,	time	spent

Recommendations
• ranking
• related	to	context/mood
• sequence

Products
• books,	movies
• friends,	 people	to	follow
• playlists,	service	bundles

2



Alice Bob Carol Dave

Shanghai	Triad 5 ? 4 ?

Usual	suspects ? ? 1 1

In	Love	and	War 2 3 2 1

Anna	Karenina 2 5 ? ?

Incognito 1 ? 2 3

3



Recommender
4



Non-personalized	recommender

• demographics • index	no. • aggregate	stats

5



Non-personalized
• Nuances	not	known	 or	required

• Initial	recommendation/profile-building	
stage

• The	same	recommendation	fits	many

6



Content-based	filtering

• demographics

• Per-user	model

• index	no.

• Stable	feature	
vector

• aggregate	stats

• user-item	stats

7



CBF
• Stable	item	description	e.g.	publisher	

summary

• Item	feature	vectors	e.g.	TF-IDF

• Learn	per-user	models	to	map	item	
feature	vectors	=>	user	ratings

• Assumes	user	preferences	remain	stable	
and	are	not	highly	nuanced

• Product	attributes	suitably	captured	by	
summary/review

8



Nearest-neighbor	
Collaborative	filtering

• demographics

• Per-user	model

• User	attributes	
unknown

• index	no.

• Stable	feature	
vector

• Item	attributes	
unknown

• aggregate	stats

• user-item	stats

9



Nearest-neighbor	CF
• User-user	CF:	find	 the	users	most	

similar	to	this	user	and	how	these	
similar	users	rated	the	item

• Item-item	CF:	find	the	items	most	
similar	to	this	item	and	how	this	user	
rated	these	similar	items

• No	assumed	attributes	– appropriate	
when	it	is	difficult	to	manually	
enumerate	attributes	of	items

10



User-user	CF

• We	want	to	find	ru,i

• similarity	between	two	users	=	wu1,u2 =	similarityi(Ru1,i,	Ru2,i)
• R	is	the	vector	of	items	that	both	users	rated
• Pearson/rank/Jaccard/cosine

• Discard	users	who	are	not	similar	– their	opinion	is	not	important

• ru,i =	sumu’(ru’,i *	wu,u’)	/	sumu’(wu,u’)

• Correct	for	user	rating	scale:	compute	deviation	from	user	mean
ru,i =	ru +	sumu’(du’,i *	wu,u’)	/	sumu’(wu,u’)

11



Item-item	CF

• We	want	to	find	ru,i

• similarity	between	two	items	=	wi1,i2 =	similarityu(Ru,i1,	Ru,i2)
• R	is	the	vector	of	ratings	by	users	that	rated	both	items
• Pearson/rank/Jaccard/cosine

• Discard	items	that	are	not	similar

• ru,i =	sumi’(ru,i’ *	wi,i’)	/	sumi’(wi,i’)

• Correct	for	user	rating	scale:	compute	deviation	from	user	mean
ru,i =	ru +	sumi’(du,i’ *	wi,i’)	/	sumi’(wi,i’)

• Which	one	is	better	and	why?
12



Issues

• Typically	user	set	has	much	higher	cardinality	than	item	set

• Items	on	average	have	more	ratings	than	users
• Therefore	item	similarity	is	more	meaningful
• Also	there	are	fewer	pairs	to	calculate

13



Matrix	Factorization-based	
Collaborative	filtering

• demographics

• Per-user	model

• User	attributes	
unknown

• Latent	user	
attributes

• index	no.

• Stable	feature	
vector

• Item	attributes	
unknown

• Latent	item	
attributes

• aggregate	stats

• user-item	stats

14



Alice Bob Carol Dave

Shanghai	Triad 5 ? 4 ?

Usual	suspects ? ? 1 1

In	Love	and	War 2 3 2 1

Anna	Karenina 2 5 ? ?

Incognito 1 ? 2 3

MU*I =	XU*K *	YTI*K
15



Matrix	factorization-
based	CF
• K	=	#latent	attributes

• Once	factorized,	any	user-item	pair	can	
be	predicted	by	multiplying	the	user	
vector	with	the	 item	vector

• Similar	to	regression	learning,	known	
matrix	cells	are	used	as	examples	to	learn	
the	latent	attributes

• However	there	are	two	sets	of	attributes	
to	learn	(X	and	Y)	– learning	starts	with	
initial	guesses	for	both	X	and	Y,	current	
values	of	X	are	used	to	drive	each	step	in	
learning	Y	values	and	vice-versa	=>	known	
as	alternating	least	squares	(ALS)	method

• Why	use	it?

16



Matrix-factor	CF
• Computationally	efficient

• Users	may	not	be	entirely	similar	
to	each	other,	so	also	for	items	–
some	users	may	be	similar	on	
some	aspects	but	differ	on	
others,	some	products	may	
appear	similar	to	some	users	but	
different	to	others

• Dimensionality	reduction	for	
high-dimension	problems	e.g.	in	
Instagram	the	user	set	and	item	
set	have	the	same	cardinality

17



Assignment

• Use	PySpark ML	recommendation	module	for	building	ALS	models

• Use	PySpark SQL	grouping	and	aggregation	API	for	item-item	CF

18


