Lecture 9-2: Feature Selection

CMPT 733, SPRING 2017

JIANNAN WANG

What? and Why?

Data are often in the form of a table

- N: # of training examples (e.g., tweets, images)
- F: # of features (e.g., bag of words, color histogram)

Feature Selection

 Selecting a subset of features for use in model construction.

What's bad about "Big F"?

- <u>Slow</u> (training/testing time)
- Inaccurate (due to overfitting)
- Hard to interpret models

		F
N	,	

How?

JIANNAN WANG - CMPT 733

Filter Method

Basic Idea

- Assign a score to each feature
- Filter out useless features based on the scores

Many popular scores [see Yang and Pederson '97]

- Classification: Chi-squared, information gain, document frequency
- Regression: correlation, mutual information

Wrapper Method

Basic Idea

- Evaluate subsets of features
- Select the best subset

How to evaluate a subset of features?

Test Error (estimated by cross validation)

How to find the best subset?

• Greedy Algorithms (e.g., forward selection, backward elimination)

Embedded Method

Basic Idea

 Modify a learning algorithm such that it can automatically penalize useless features

Lasso Regression

$$\underset{\beta}{\operatorname{argmin}} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 \quad \text{Penalize useless features}$$

Comparisons

Filter Method

- Good for preprocessing
- Bails to capture relationships between features

Wrapper Method

- Capture relationships between features
- 😕 Highly inefficient

Embedded Method

- Combine the advantages of the above methods
- 😕 Specific to a learning algorithm

Dimensionality Reduction

Feature Selection

 New features have to be a subset of old features

Feature Transformation (e.g., PCA)

 New features may NOT be a subset of old features

JIANNAN WANG - CMPT 733

Conclusion

Why feature selection?

Feature-selection methods

- Filter method
- Wrapper method
- Embedded method

Comparisons of the three methods

Assignment 9

Part 2: Feature Selection

- Task B. Filter-based Method
- Task C. Principal Component Analysis (PCA)

Deadline: 11:59pm, Mar 26th http://tiny.cc/cmpt733-a9

JIANNAN WANG - CMPT 733