Lecture 3: Anomaly Detection

CMPT 733, SPRING 2017

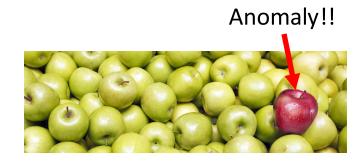
JIANNAN WANG

Outline

Recap of Anomaly Detection

Application: Network Intrusion Detection

What is Anomaly Detection?

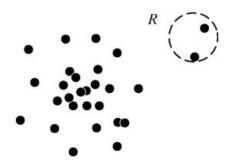

Definition from dictionary

a·nom·a·ly

/əˈnäməlē/ Đ

noun

1. something that deviates from what is standard, normal, or expected.

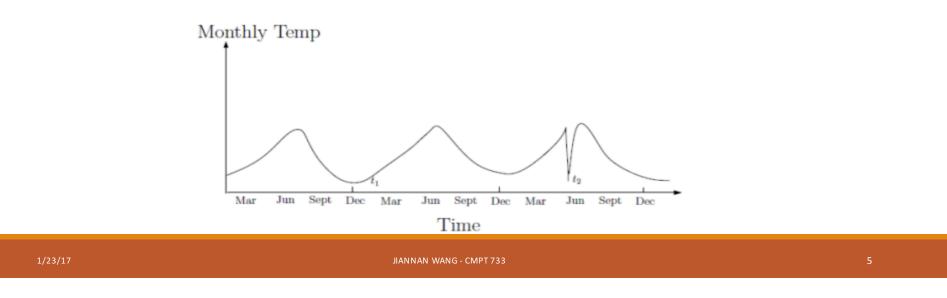


Also known as Outlier Detection

Anomaly Categories (I)

Global Anomaly

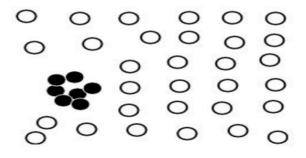
- A data point is considered anomalous with respect to the rest of data
- Example: There is a person whose age is 110



The objects in region R are outliers.

Anomaly Categories (II)

Context Anomaly


- A data point is considered anomalous with respect to a specific context
- Example: There is a person in our class whose age is 70.

Anomaly Categories (III)

Collective Anomaly

- A subset of data points as a whole deviates significantly from the entire dataset
- Example: An order may have some delay to be processed. But, what if 1000 orders are processed with delay?

The black objects form a collective outlier.

Real-world Applications

Fraud Detection

Medical Care

Public Safety and Security

Network Intrusion

Challenges

Modeling normal objects and anomalies effectively:

- Hard to enumerate all possible normal behaviors
- The border between normal objects and anomaly can be gray area

Application specific anomaly detection:

• Hard to develop general purpose anomaly detection tools

Understandability:

• Not only detect the anomalies, but also understand why they are anomalies

Outline

Recap of Anomaly Detection

Application: Network Intrusion Detection

"Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime."

- Chinese Proverb

Teach you a network-intrusion solution vs. Teach you how to come up with this solution

Network Intrusion

"Our web servers got attacked yesterday. I don't want it happen again. Please build a system to address it!"

TO DO Lists:

- 1. Finding related datasets (e.g., /var/log/apache2/access.log)
- 2. Figuring out how to detect attacks (anomalies) Key Problem
- 3. Triggering an alert when an attack is detected (e.g., send an email)

How to come up with a solution?

1. Doing a survey on related work

Anomaly Detection Methods

Survey Paper

 V. Chandola, A. Banerjee, V. Kumar: <u>Anomaly detection: A survey</u>. ACM Computing Surveys (2009)

Supervised Learning (e.g., Assignment 2 – Sentiment Analysis)

- Both normal and anomalous instances are given
- Classification models can be used

Unsupervised Learning (e.g., Find the top-10 hot topics in twitter)

- No labeled instances are given
- Clustering models can be used

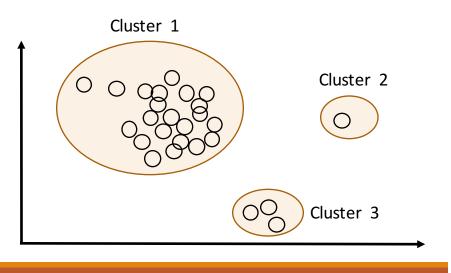
Why is unsupervised learning more common?

No need to label data

Labeling is a tedious and expensive process

Able to identify "unknown unknowns"

- Not only detect a known attack pattern,
- but also detect an unknown attack pattern


How to come up with a solution?

- 1. Doing a survey on related work
- 2. Choosing an unsupervised learning approach

Clustering-based

Basic Idea

- Cluster data points into groups.
- Decide which points are anomalies:
 - Points in small clusters
 - Using distance to the closest cluster

How to come up with a solution?

- **1**. Doing a survey on related work
- 2. Choosing an unsupervised learning approach
- 3. Picking up a clustering algorithm

K-Means

Iterative Algorithm

• This is the initial motivation for creating Spark

Algorithm Overview

- 1. Picking up K random points as cluster centers
- 2. Assigning each point to the closest center
- 3. Updating cluster centers accordingly
- 4. Repeat Steps 2 and 3 until some termination conditions are met

How to optimize?

- 1. RDD.cache()
- 2. K-Means++ Initialization

How to come up with a solution?

- **1**. Doing a survey on related work
- 2. Choosing an unsupervised learning approach
- 3. Picking up a clustering algorithm
- 4. Selecting and transforming features

Feature Selection

Raw Data

1 in24.inetnebr.com -	- [01/Aug/1995:00:00:01 -0400] "GET /shuttle/missions/sts-68/news/sts-68-mcc-05
2 uplherc.upl.com	[01/Aug/1995:00:00:07 -0400] "GET / HTTP/1.0" 304 0
3 uplherc.upl.com	[01/Aug/1995:00:00:08 -0400] "GET /images/ksclogo-medium.gif HTTP/1.0" 304 0
4 uplherc.upl.com	[01/Aug/1995:00:00:08 -0400] "GET /images/MOSAIC-logosmall.gif HTTP/1.0" 304 0

Turning Raw Data into Connection Data

 A connection is a sequence of HTTP requests starting and ending at some well defined times

Turning Connection Data into Feature Vectors

- Requiring a fair bit of domain knowledge
- Asking yourself how to distinguish attacks from normal connections (e.g., number of failed login attempts, duration of the connection)

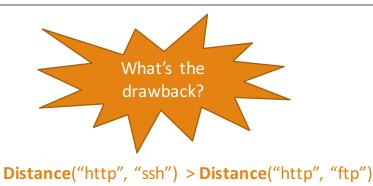
Feature Transformation

Feature Vector

• e.g., [http, BC, 0, 105, 146, 0, ... , 0.00, 0.00]

Categorical Numerical feature feature

Will this feature vector work for KMeans?


• What's distance between "http" and "ftp"?

 The distance between two feature vectors will be dominated by the features with a broad range of values (e.g., the 4th feature)

Categorical Features → Numerical Features

Naïve solution

- http \rightarrow 0
- ftp \rightarrow 1
- \circ ssh \rightarrow 2

One-hot encoding

• http → [1,0,0]• ftp → [0,1,0]• ssh → [0,0,1]

Scaling Numerical Features

1. Rescaling

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

2. Standardization

$$x' = \frac{x - \bar{x}}{\sigma}$$

3. Scaling to unit length

• You have done it in Assignment 2

$$x' = \frac{x}{||x||}$$

It depends on data. Some heuristics:

- (2) is more popular than (1)
- (1) or (2) are often first applied, and then (3) is applied afterward

How to come up with a solution?

- **1**. Doing a survey on related work
- 2. Choosing an unsupervised learning approach
- 3. Picking up a clustering algorithm
- 4. Selecting and transforming features
- 5. Parameter Tuning

Parameter Tuning

You need to describe your solution in Assignment 3

Key Questions

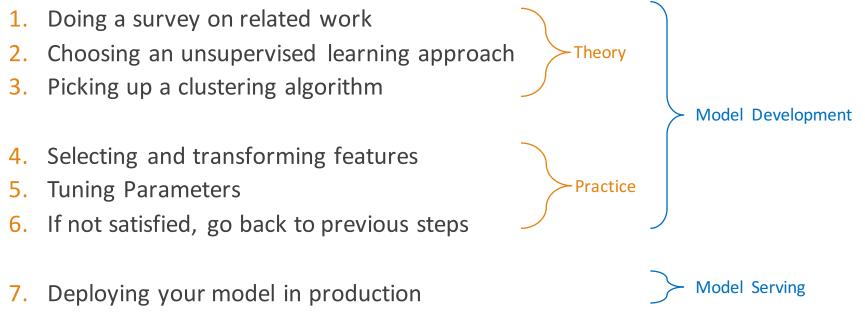
- How different is it from supervised learning?
- Which parameters do you need to tune?
- What are possible values for them?
- How can you tell which values are better?

How did we come up the solution?

- **1**. Doing a survey on related work
- 2. Choosing an unsupervised learning approach
- 3. Picking up a clustering algorithm
- 4. Selecting and transforming features
- 5. Tuning Parameters
- 6. If not satisfied, go back to previous steps

How did we come up the solution?

- **1**. Doing a survey on related work
- 2. Choosing an unsupervised learning approach
- 3. Picking up a clustering algorithm
- 4. Selecting and transforming features
- 5. Tuning Parameters
- 6. If not satisfied, go back to previous steps
- 7. Deploying your model in production


Model Serving

New Challenges

- Model has to reflect to the latest data updates.
 - Kmeans \rightarrow Streaming Kmeans
- Predictions have to be made in real-time.
 - Parallelizing prediction process

Summary

How did we come up the solution?

Assignment 3: Anomaly Detection

Part 1. Model Development (required)

Part 2. Model Serving (optional)

Deadline: 11:59pm, Jan 29th http://tiny.cc/cmpt733-a3

1/23/17