
CMPT 354
Database Systems

Simon Fraser University

Spring 2017

Instructor: Oliver Schulte

Assignment 3b: Application Development, Chapters 6 and 7.

Instructions: Check the instructions in the syllabus. The university policy on academic
dishonesty and plagiarism (cheating) will be taken very seriously in this course.
Everything submitted should be your own writing or coding. You must not let other
students copy your work. On your assignment, put down your name, the number of the
assignment and the number of the course. Spelling and grammar count.

Group Work: Discussions of the assignment is okay, for example to understand the
concepts involved. If you work in a group, put down the name of all members of your
group. There should be no group submissions. Each group member should write up their
own solution to show their own understanding.

For the due date please see our course management server https://courses.cs.sfu.ca .

Additional instructions for what to submit appear at the end of this file.

Systems Issues.

Systems Support. The purpose of this assignment is to give you experience with writing
programs that interact with a database management system. You will learn hardly
anything from typing in someone else’s instructions; you will learn a lot from getting the
system to work on your own. Therefore we provide minimal support for getting things to
work on your own system. As with other assignments, you can post on the discussion
forum, but there is no email support. You can also come see us during our office hours
on. Start early and ask your questions in class, office hours, or team up with classmates.
You can use the discussion forum on courses.cs.sfu.ca .

System Requirements. Please review the instructions for Part 3a for information about
what setup to use, where to find documentation, tips and tricks.

For all questions, use the AdventureWorksLT database. Your solutions should follow the
general design principles shown in the text and the lecture notes.

Part III: Views

1. Write SQL code that finds customers who have bought a product of color red.

2. Write SQL code that creates a view RedSpending on the Customer table with the
following specifications.

a. The fields in the view are CustomerID, FirstName, LastName,
HighestPrice, in that order (e.g., CustomerID is the first).

b. The customers in the view should be those who have bought a product of
colour red.

c. HighestPrice should contain the highest unit price that they have paid for
some red product (see SalesOrderDetail; ignore UnitPriceDiscount).

3. Write a small application that does the following when run.

i. Display on the screen all and only colors of products in the Product table
(including “Multi” but excluding Null). The colors should be sorted in
alphabetical order.

ii. Accept a single string input <colour> from the keyboard. This will be one
of the colors.

iii. Create a view table for that <colour>, where the view table meets the
criteria a,b,c for that colour. The application should write the result to the
screen as plain comma separated text. The output should be sorted in
descending order by (LastName, First Name). For instance, customer
Catherine Abel should appear below customer Christopher Beck.

Grading Criteria:

Total Marks: 100 Marks
1. SQL query 1 (20 Marks)
2. SQL code for view (40 Marks)
3. Application with Interface (40 Marks)

Part IV: Cursors and HTML

Write a small application that does the following.

1. Display on the screen all and only colors of products in the Product table
(including “Multi” but excluding Null). They should be sorted in alphabetical
order.

2. Accept a single string input <colour> from the keyboard, and a single input
number <price>. This will be one of the colours.

3. If the <price> is less than the average StandardCost for the colour chosen,
return a message “Price is too low for <color>” (where you display the name
of the color, e.g. “red”). The answer should be computed by calling the stored
procedure that you wrote for question II in Assignment 3a.

4. Otherwise the application should do the following:
Write an HTML file that contains the information from the view defined in
Part III, sorted in descending order by the value of HighestPrice. So the
HTML file should, in valid syntax, contain the information from the fields
Customer_ID, FirstName, LastName, HighestPrice, where the customers who
have the greatest value for HighestPrice appear first. This information should
appear in an HTML table using the <table>….</table> tag. The HMTL file
should display correctly in a standard browser (Firefox, Internet Explorer,
Safari, etc.).

For part 4, you should use a cursor type of object (depending on your system,
a cursor may be called something like resultset, iterator, recordset, datareader,
reader) and iterate over the rows in the cursor to produce the HTML file.
Several examples of this iteration appear in the lecture notes and the book.
Even if your system supports automatically outputting a query result to an
HTML table, the point is to give you some practice both with cursors and with
the HTML format.

Grading Criteria:

Total Marks: 100 Marks
1. Input Form (15 Marks)
2. Price Error Check (15 Marks)
3. Sorted Output (35 Marks)
4. HTML output (35 Marks)

General Grading Criteria.

• Most application development requires you to make many choices of your own. It
is normal that there are several valid solutions, some clearly better than others,
some involving trade-offs. Ambiguity is not the same as arbitrariness. An
opportunity for you to practice making design choices, dealing with ambiguity
and exercising your own judgment is a feature of the assignment, not a bug. We
are happy to look at drafts and discuss design choices during the office hours. It’s
also a good idea to study with other students and discuss (not copy; see syllabus
and instructions).

• Code design and documentation are part of the criteria. Remember that your TA
may not be an expert in the development system you are using. The code required
is so short that having an explanatory comment for each line is not overdoing it.
In fact, it’s a good habit to acquire.

• The burden of proof is on you to convince us that your program works by
providing legible code, good documentation and illustrative screenshots. Your
code should run in the CSIL environment so we can run it if necessary, but if we
have to check it out by running it, your documentation is probably insufficient.

What to Submit

Part III: Views.

Submit the following files:

For components 1 and 2:

1. For the SQL code, a single sql script for both components. This should execute
without error on SQL Server. Call this file sqlIII.sql .

For component 3:

2. Your source code sourceIII.*, where * is the file extension required for your
development setup. Please include supporting files if needed (like any dll, jar or
class files). Your code should be self-contained. If your code comprises several
files, please combine them into a single file sourceIII.zip.

3. A readme file with instructions for how to run your code on leto.csil.sfu.ca . Call
this file readmeIII.rtf .

4. A screenshot of the session, where we can see the displayed colours, the user
choosing a colour, and the system outputting the view. Call this file outputIII.pdf .

Put all files, including the .sql file, together as an archive solutionIII.zip.

Part IV. Cursors and HTML.

Submit the following files:

1. Your source code sourceIV.*, where * is the file extension required for your
development setup. Please include supporting files if needed (like any dll, jar or
class files). Your code should be self-contained. If your code comprises several
files, please combine them into a single file sourceIV.zip.

2. A screenshot of the session, where we can see the displayed colours, the user
choosing a colour, and a price, and the html/xml file produced by your program
opened in a browser. Show the interaction for two different colours, one for each
of the two possible responses. (e.g., color = ‘red’, price is too low, and color =
‘grey’, price is okay). Call this file outputIV.pdf .

3. Also include the html file generated by your program, call it outputIVa.html.

Put all files together as an archive solutionIV.zip . Then you are finished!

