

Simon Fraser University

Descriptive Geometry

Nov 1, 2017

School of Engineering Science

Oblique Planes

Isometric View

View normal to oblique plane 2

Oblique Planes

Oblique plane is not true shape or size in any of these views

Engineering Scienc₃e

Learning Objectives

- Recognize types of lines and planes
- Find the length of a line using descriptive geometry
- Find the true shape and size of a plane

Auxiliary Views

Recall from previous lecture

Engineering Scienc₅e

 Create a true size for the surface ABCD

School of 6

- Create a fold line parallel to the surface
- The line of site (LOS) is perpendicular to this surface

School of Engineering Science

- Draw Fold Lines
 - H-F and F-P
- Lines at a distance X from the rear edge of each view
- Draw projection lines between each view

Engineering Scienc₈e

• Create construction lines perpendicular to the surface

School of Engineering Sciency

- Measure the distance from the fold line H-F to points B and C
- Transfer these measurements with respect to fold line F-1

School of Engineering Scien₁₀

- Repeat the measurements for points A and D
- Transfer into the Aux view

School of Engineering Scienge

- We now have the true shape of surface ABCD
- We can measure the shape directly to find dimensions

School of Engineering Scien₁₂

Partial Aux Views

- Don't show other features
- Easier to draw
- Easier to understand

Successive Aux (Full) Views

School of Engineering Scien₁₄

Successive Aux Views

School of 15

Engineering Scien₁₆

Successive Aux Views

School of Engineering Scien₁₇

Descriptive Geometry

- Find the actual shape and size of a shape
 - Lines
 - Planes
- Visually doing the mathematical operation:

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

True Length of a Line

• True length: a straight line distance between two points

 If a line is positioned parallel to a projection plane and the line of site is perpendicular to that projection plane, the line will appear as a true length (see Auxiliary View Example)

Types of Lines

- Principal Line: Parallel to one of the principal projection planes
 - Frontal Line: Parallel to frontal plane
 - Horizontal Line: Parallel to horizontal plane
 - Profile Line: Parallel to profile plane
- Oblique Line: Is not parallel to any of the principal projection planes

20

Horizontal Lines

Note: A point is represented with a "+" mark

Engineering Scien₂₁

oblique line

Simon Fraser University

Principal Lines

23

L_F

Η

F

G_F

School of Engline ening Scien 24

G_H

 G_{F}

Η

F

- Step 1: Create Fold Line F-1
- Step 2: Draw perpendicular projectors from L_F and G_F to F-1

School of 26

Finding True Lengths

- Step 1: Create Fold Line F-1
- Step 2: Draw perpendicular projectors from L_F and G_F to F-1
- Step 3: Measure distance from
 L_H to H-F and G_H to H-F

27

Finding True Lengths

- Step 1: Create Fold Line F-1
- Step 2: Draw perpendicular projectors from L_F and G_F to F-1
- Step 3: Measure distance from L_H to H-F and G_H to H-F
- Step 4: Transfer distances to the aux view using F-1

Finding True Lengths

- Step 1: Create Fold Line F-1
- Step 2: Draw perpendicular projectors from L_F and G_F to F-1
- Step 3: Measure distance from L_H to H-F and G_H to H-F
- Step 4: Transfer distances to the aux view using F-1
- Step 5: Connect the dots

This is the True Length

Simon Fraser University

Planes

30

Types of Planes

- Horizontal Plane: Appears as True Shape and Size (TSP) in top and bottom views.
- Vertical Plane: Appears as an edge in top and bottom views. Can appear several ways in other views.
- Profile Plane: Vertical Plane that is parallel to the profile projection plane.
- Frontal Plane: Vertical Plane that is parallel to the frontal projection plane.
- Inclined Plane: Perpendicular but not parallel to a principal projection plane.
- Oblique: A plane that appears as a surface but is not TSP in every principal view.

Кн

Н

F Р

ΚF

(F) Inclined Plane

СР

Вρ

ΓКΡ

ŪΡ

Uн

. UF

Be

CF

н

СР

ЪΡ

BF

FP

ВР

UP

СР

Kρ

S

32

School of Engineering Scien₃₃

ZF

 X_{H}

X_F

True Size of a Plane

• Step 1: Create a line parallel to H-F (AY)

X_H

X_FF

True length

True Size of a Plane

- Step 1: Create a line parallel to H-F (AY)
- Step 2: Project line into the other
 view

35

X_H

True Size of a Plane

- Step 1: Create a line parallel to H-F (AY)
- Step 2: Project line into the other view
- Step 3: Construct a fold line
 perpendicular to AY

School of 36

- Step 1: Create a line parallel to H-F (AY)
- Step 2: Project line into the other view
- Step 3: Construct a fold line perpendicular to AY
- Step 4: Measure distances for the points

School 0 37

- Step 1: Create a line parallel to H-F(AY)
- Step 2: Project line into the other view
- Step 3: Construct a fold line perpendicular to AY
- Step 4: Measure distances for the points
- Step 5: Transfer distances

This is an edge view

- Step 1: Create a line parallel to H-F (AY)
- Step 2: Project line into the other view
- Step 3: Construct a fold line perpendicular to AY
- Step 4: Measure distances for the points
- Step 5: Transfer distances
- Step 6: Construct a fold line
 parallel to the edge view

chool of Englineering Scien₃₉

- Step 6: Construct a fold line parallel to the edge view
 - Step 7: Measure distances

School of 40

Z_F

X_H

True Size of a Plane

 X_{11}

 Y_2

- Step 6: Construct a fold line parallel to the edge view
- Step 7: Measure distances
- Step 8: Transfer distances

 X_2

 A_2

True size of plane XYZ