Assignment 2 Solution Instructor: Oliver Schulte

Theory: Variance and Covariance (10 Marks)

For definitions and notation please refer to the text. We write var(X) for the variance
of a single random variable and cov(X, Y') for the covariance of two random variables,
such that var(X) = cov(X, X).

1. Show that var(X) = E(X?) — [E(X)]?.

)
X?) = 2B(X)E(X) + [E(X)]*

2. Show that if two random variables X and Y are independent, then their covariance
is zero.

X and Y are independent random variables, So,

cov(X,Y) = E(XY) — E(X)E(Y)
— B(X)E(Y) - B(X)B(Y)
=0

Practice: Decision Tree Learning (15 Marks)

1. Install a package that implements the ID3 decision tree algorithm that we studied
in class, for both discrete and continuous input features. We recommend using
Weka, see course web page.

CSS_rank <= 12
|  rs_G <= 15
| | country_group = EURO
| | |  rs_PlusMinus <= 0
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CSS_rank > 12

rs_PlusMinus <= -2: no (3.0)
rs_PlusMinus > -2: yes (15.0/1.0)
rs_PlusMinus > 0: no (8.0)
country_group = CAN: yes (5.0)
country_group = USA: yes (5.0/1.0)

rs_G > 15: yes (36.0)

rs_P <= 11: no (99.0/16.0)

rs_P > 11

rs_PlusMinus <= 0

rs_PlusMinus <= -1

country_group = EURO: no (32.0/2.0)
country_group = CAN

rs_PlusMinus <= -18: no (6.0)
rs_PlusMinus > -18

Position = D

| po_G <= 2

| |  Weight <= 198: no (2.0)

| | Weight > 198: yes (11.0/2.0)
| po_G > 2: no (2.0)

Position = C

|  rs_PIM <= 45: yes (3.0)

|  rs_PIM > 45: no (6.0)
Position = L

po_GP <= 14

| rs_ G <= 12

| |  rs_A <= 10: yes (2.0)
| | rs_A > 10: no (3.0)

|  rs_G > 12: yes (8.0)
po_GP > 14: no (3.0)

Position = R

|  Weight <= 215: no (6.0/1.0)

|  Weight > 215: yes (4.0)

country_group = USA: yes (11.0/3.0)
rs_PlusMinus > -1

CSS_rank <= 39: yes (34.0/3.0)
CSS_rank > 39

rs_GP <= 32

rs_G <= 4: yes (3.0)
rs_G > 4
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country_group = EURO

|
|
| |
| |
| |
| |
| |
| |
| |
| c
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| c
| |
| |
| |
| |
| |
| |

s_PlusMinus > 0
po_A <= 10

po_PIM <= 23

Height <= 71

Weight <= 191: yes (2.0)
Weight > 191: no (2.0)
Height > 71: no (15.0)

Weight <= 197: yes (12.0)

Weight > 197

CSS_rank <= 86: yes (5.0)
CSS_rank > 86
CSS_rank <= 234

rs_PIM <= 50: yes (3.0/1.0)
rs_PIM > 50: no (6.0)

CSS_rank > 234: yes (4.0)

ountry_group = CAN
Height <= 74

DraftAge <= 18
po_GP <= 13

rs_G <= 5: yes (2.0)
rs_G > 5: no (9.0/1.0)

po_GP > 13: yes (2.0)
DraftAge > 18

CSS_rank <= 108: yes (8.0)
CSS_rank > 108

Height <= 73

|  rs_PIM <= 109: yes (13.0/3.0)
|  rs_PIM > 109: no (4.0)

Height > 73: no (3.0)

Height > 74: no (3.0)

ountry_group = USA
rs_A <= 45

Height <= 72: yes (18.0/3.0)
Height > 72

rs_PIM <= 62: yes (11.0/4.0)
rs_PIM > 62: no (11.0/3.0)
rs_A > 45: no (5.0)

country_group = EURO: no (51.0/4.0)
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country_group = CAN
rs_GP <= 57: no (12.0)

rs_GP > 57
|  po_A <=7
| o_A <=3

P

| Position = D

| |  po_PIM <= 2: no (7.0)

| | po_PIM > 2

I I |  po_PIM <= 11: yes (8.0)

I I |  po_PIM > 11: no (4.0/1.0)
| Position = C: no (16.0/3.0)

| Position = L: no (5.0/1.0)
I

I

I

P

I

I

I

I

Position = R
|  Weight <= 205: no (5.0/1.0)
|  Weight > 205: yes (3.0)
o_A >3
po_G <= 3: yes (7.0)
po_G > 3
|  po_G <= 5: no (5.0/1.0)
|  po_G > 5: yes (2.0)
|  po_A > 7: no (5.0)
country_group = USA
|  CSS_rank <= 36: yes (7.0/1.0)
|  CSS_rank > 36: no (26.0/3.0)
o_PIM > 23
country_group = EURO: no (2.0)
country_group = CAN
|  DraftAge <= 18: yes (7.0)
|  DraftAge > 18: no (3.0/1.0)
country_group = USA: yes (4.0/1.0)

po_A > 10: yes (13.0/1.0)

=>You can use any tools to implement your ID3 decision tree algorithm

2. Apply the ID3 learner to the hockey draft dataset, using GP > 0 as the target
class variable. For data preprocessing, drop the sum_7yr_GP column.

=>Follow the mentioned preprocessing steps
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3. Show the decision tree learned. Which branch is the most informative, meaning
that its leaf has the lowest class entropy? Given your understanding of the domain,
do the features on the branch make sense?

- CSS Ranking plays a vital role in classification.
- CSS_rank<=12, rs_G>15 is the most informative branch

4. (Bonus Question) Rerun the Naive Bayes classifier from assignment 1 on the new
training and test set for this assignment. Compare the test set accuracy of the
decision tree learner to the result of the Naive Bayes classifier.

- Decision Tree has better accuracy than Naive Bayes classifier.
As the data gets complex, flexible model like decision tree tends to
perform better than Naive Bayes classifier

Theory: Minimum Least Squares Error for Regularized Linear
Regression (20 Marks)

Consider least-squares linear regression with L2 regularization as defined in the text.

1. Using the notation of the text, write down the squared-error function, including
the regularization term.

n

B(w) = 5 (0 — w)? + Sl

1
2. Show that the weight vector w* that minimizes this error function is given by
w' =M+ X"X)'X"y.
1 A
E(w) =5y - Xw)? + §|w|2
1 T A
:E(y — Xw)' (y — Xw) + Fw W
1 A
ZE(yTy — 2y Xw + XwXTw?) + §wTw
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Taking derivatives on both sides

OE(w) 0G(y"y —2y" Xw+ XwXTwT)) 03w’

ow ow + ow
1

1

:§2XTXw — 5QXTy + Aw

=XTXw—XTy+ Iw
XTXw+ A w = X"y
(XTX +ADw = X"y

So,

w* =(XTX + )X Ty

Practice: Implement Least Squares Regression (50 Marks)

1. Try the values from the set A = 0,0.01,0.1,1, 10,100, 1000. Make a plot that
shows the following. The horizontal axis shows the value of A on a log scale (this
is called a semilogx plot). One curve in the plot should show the squared-error
loss evaluated by using 10-fold cross-validation on the training set. The second
curve shows the squared-error loss evaluated by applying the learned weight vector
to the test set. Put this plot in your report, and note which regularizer value you
would choose from the cross-validation, and which regularizer value would give
the lowest squared-error on the test set.

2. For the regularizer that you chose as best from cross-validation, inspect the lear-
ned weight magnitudes. Are any of the quadratic interaction terms important (i.e.
carry significant weight compared to other variables)? The decision tree also cap-
tures interactions among predictor variables - how do the decision tree interactions
compare to the interaction terms with high weights?

Here is the plot of Least square regression using cross validation and
mentioned lambda values
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Note: The value changes between 1072 to 1073 for both cross validation

and test error based on how you standardize the features ,deal with the

0 value features and select the division of your kfolds. We have considered
both these range of lambdas as the correct answer

Figura 1: Least Square regression with Regularization
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From the observation of the weight magnitudes in the least square regression model, fo-
llowing are the highest weight predictors with interaction terms responsible for the pre-
diction.

DraftAge : Weight

CSS,ank : rsq

CSS,ank : rsp

Height : Weight

The interaction terms are similar to that of decision tree splits. This states that the
decision tree and the linear regression agrees on the use of interaction terms for the
given dataset and using interaction terms can be helpful.



