
Fall 2017
CMPT 726: Assignment 1 Instructor: Oliver Schulte

Assignment 1: Probabilistic Reasoning, Maximum Like-
lihood, Classification

For due date see https://courses.cs.sfu.ca

This assignment is to be done individually.

Important Note: The university policy on academic dishonesty (cheat-
ing) will be taken very seriously in this course. You may not provide or use
any solution, in whole or in part, to or by another student. Any mark in this
assignment may be changed on the basis of an oral exam where you need to
explain your solution.

You are encouraged to discuss the concepts involved in the questions with
other students. If you are in doubt as to what constitutes acceptable discus-
sion, please ask! Further, please take advantage of office hours offered by the
instructor and the TA if you are having difficulties with this assignment.

DO NOT:
• Give/receive code or proofs to/from other students
• Use Google to find solutions for assignment
DO:
• Meet with other students to discuss assignment (it is best not to take

any notes during such meetings, and to re-work assignment on your own)
• Use online resources (e.g. Wikipedia) to understand the concepts needed

to solve the assignment

Practice: Joint and Conditional Probabilities (10 marks)

Go to www.aispace.org and start the “belief and decision network” tool.
Load the sample file “File/Load Sample Problem/Simple Diagnostic Exam-
ple”. If you have difficulty with the UBC tool (e.g. Java doesn’t run, Simple
Diagnostic isn’t found), I suggest you download the jar file from the course
website.

We will use this to test some of the basic probability laws. The AIspace
tool can do many of these calculations for you, but the purpose of the exercise
is to learn the principles behind the calculations. You can use the tool to
check your answers, but you should compute them yourself using the proba-
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bility calculus together with the conditional probabilities from the Bayesian
network. Compute the following joint probabilities up to 6 significant digits.

1. Use the product formula of Bayes nets and the conditional probability
parameters specified by AIspace to compute the probability that: all
nodes are true.
P(all nodes are True) = 0.00128

2. Use the product formula of Bayes nets and the conditional probability
parameters specified by Aispace to compute the probability that: all
nodes are true except for Sore Throat, and that Sore Throat is false.
P(SoreThroat=False, all other nodes True) = 0.00299

3. Show how can you use these two joint probabilities to compute the
probability that: all nodes other than Sore Throat are true. (Where
the value of Sore Throat is unspecified.)
P(all nodes other than SoreThroat True)
= P(SoreThroat=True, all other nodes True) + P(SoreThroat=False,
all other nodes True)
= 0.00128 + 0.00299
= 0.00427

4. Verify the product formula:
P(all nodes are true) = P(Sore Throat = true | all other nodes are true)
x P(all other nodes are true).
You may get the first conditional probability by executing a query with
the tool.
P(all nodes are true)
= P(SoreThroat True | all other nodes are True)×P(all other nodes are
True)
= 0.3 × 0.00427
= 0.00128

5. Compute the probability that Sore Throat is true and that Fever is
true. (Hint: If you use the right formula, you need only 4 conditional
probabilities.)
P(SoreThroat = True, Fever = True) = P(SoreThroat = True, Fever
= True | Influenza = True)×P(Influenza = True)
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+ P(SoreThroat = True, Fever = True | Influenza = False)×P(Influenza
= False)
= P(SoreThroat = True | Influenza = True) × P(Fever = True | In-
fluenza = True)×P(Influenza = True)
+ P(SoreThroat = True | Influenza = False) × P(Fever = True | In-
fluenza = False)×P(Influenza = False)
= 0.3 × 0.9 × 0.05 + 0.001 × 0.05 × 0.95
= 0.0135

You can enter the computed probabilities in the table below.
Probability to be Computed Your Result
P(all nodes true)

0.00128
P(Sore Throat = False, all other nodes true)

0.00299
P(all nodes other than Sore Throat true)

0.00427
P(all nodes are true) = P(Sore Throat = true | all other
nodes are true) x P(all other nodes are true).

0.00128304 = 0.3 ×
0.0042768

P(Sore Throat = true, Fever = True)
0.0135475

Theory: Conditional Probabilities (9 marks)

Exercise 13.3 in Russell and Norvig AMAI.

1. True.
P(a | b, c) = P(b | a, c)

=⇒ P (a,b,c)
P (b,c)

= P (b,a,c)
P (a,c)

=⇒ P (a, c) = P (b, c)

=⇒ P (a,c)
P (c)

= P (b,c)
P (c)

∴ P(a | b, c) = P(b | a, c) =⇒ P(a | c) = P(b | c)

2. False.
Counter-Example: Consider two independent coin flips a and b, such
that c = b.
P(a = Head | b = Tail, c = Tail) = P(a = Head) = 0.5
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P(b = Tail | c = Tail) = 1
P(b = Tail) = 0.5
P(b = Tail | c = Tail) 6= P(b = Tail)

3. False.
Counter-Example: Consider two independent coin flips a and b, such
that c = a xor b.
P(a = Tail | b = Tail) = P(a = Tail) = 0.5
P(a = Tail | b = Tail, c = Tail) = 1
P(a = Tail | c = Tail) = 0.5
P(a = Tail | b = Tail, c = Tail) 6= P(a = Tail | c = Tail)

Theory: Expectations (5 marks)

Any function f(X) of a discrete random variableX defines a random variable.
(Define p(f(X) = y) =

∑
x:f(x)=y p(x).) Similarly, given a joint probability

p(X1, . . . , Xn), any function f(X1, . . . , Xn) is also a random variable. Show
that the expected value of the sum of two random variables is the sum of the
expectations. In symbols, show that

Let denote S the sample space underlying a random experiment with el-
ements s ∈ S. Let’s define two random variables X1 and X2 whose domains
are S.
E[X1 +X2]

=
∑

x1,x2∈S(x1 + x2)× P (X1 = x1, X2 = x2)
=

∑
x1∈S

∑
x2∈S x1 × P (X1 = x1, X2 = x2) +

∑
x1∈S

∑
x2∈S x2 × P (X1 =

x1, X2 = x2)
=

∑
x1∈S x1

∑
x2∈S ×P (X1 = x1, X2 = x2) +

∑
x2∈S x2

∑
x1∈S ×P (X1 =

x1, X2 = x2)
=

∑
x1∈S x1 × P (X1 = x1) +

∑
x2∈S x2 × P (X2 = x2)

= E[X1] + E[X2]

Practice: Decision Tree Learning with ID3 (10 marks)

Figure 1 provides data about whether a customer will wait for a table in
a restaurant or not. Assume that ID3 splits first on the Pat attribute (for
Patrons). Show the following for the branch Pat = Full.
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1. The next attribute chosen by ID3. There may be a tie among several
attributes; you can list all or just one of them.

2. The expected information gain associated with the next attribute. Com-
pare this with the expected information gain for Hungry.

3. How you calculated the expected information gain.

Consider:
H(S) = −p+ × log2(p+)− p− × log2(p−)

Gain(S,A) = H(S)−
∑

v∈values(A)
|Sv |
|S| H(Sv)

H(Pat=Full)=0.91829 [2T, 4F]

Alt:
H(Alt=True)=0.97095 [2T, 3F]
H(Alt=False)=0 [0T, 1F]
Gain(Pat=Full, Alt)= H(Pat=Full) - 5

6
H(Alt=True) - 1

6
H(Alt=False)

= 0.10917

Bar:
H(Bar=True)=0.91829 [1T, 2F]
H(Bar=False)=0.91829 [1T, 2F]
Gain(Pat=Full, Bar)= H(Pat=Full) - 1

2
H(Bar=True) - 1

2
H(Bar=False)

= 0

Fri:
H(Fri=True)=1 [2T, 3F]
H(Fri=False)=0 [0T, 1F]
Gain(Pat=Full, Fri)= H(Pat=Full) - 5

6
H(Fri=True) - 1

6
H(Fri=False) =

0.1091

Hun:
H(Hun=True)=1 [2T, 2F]
H(Hun=False)=0 [0T, 2F]
Gain(Pat=Full, Hun)= H(Pat=Full) - 2

3
H(Hun=True) - 1

3
H(Hun=False)

= 0.2516
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Price:
H(Price=$)=1 [2T, 2F]
H(Price=$$$)=0 [0T, 2F]
Gain(Pat=Full, Price)= H(Pat=Full) - 2

3
H(Price=$) - 1

3
H(Price=$$$)

= 0.2516

Rain:
H(Rain=True)=0 [0T, 1F]
H(Rain=False)=0.97095 [2T, 3F]
Gain(Pat=Full, Rain)= H(Pat=Full) - 1

6
H(Rain=True) - 5

6
H(Rain=False)

= 0.1091

Res:
H(Res=True)=0 [0T, 2F]
H(Res=False)=1 [2T, 2F]
Gain(Pat=Full, Res)= H(Pat=Full) - 2

6
H(Res=True) - 4

6
H(Res=False)

= 0.2516

Type:
H(Type=Thai)=1 [1T, 1F]
H(Type=French)=0 [0T, 1F]
H(Type=Burger)=1 [1T, 1F]
H(Type=Italian)=0 [0T, 1F]
Gain(Pat=Full, Type)= H(Pat=Full) - 2

6
H(Type=Thai) - 1

6
H(Type=French)

-2
6
H(Type=Burger) -1

6
H(Type=Italian) = 0.2516

Est:
H(Est=10-30)=0 [1T, 1F]
H(Est=30-60)=1 [1T, 1F]
H(Est=>60)=1 [0T, 2F]
Gain(Pat=Full, Est)= H(Pat=Full) - 2

6
H(Est=10-30) - 2

6
H(Est=30-60)

- 2
6
H(Est=>60) = 0.2516

The highest information gain possible is 0.2516 and the tie is between
Hungry, Price, Reservation, Type and Estimated Wait Time.
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Decision tree learning

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

16

Figure 1: Data Set for Question 5, Decision Tree Learning

Theory: Maximum Likelihood Parameter Estimation
for Bayesian Networks (8 marks)

Consider learning the parameters for the Bayesian network shown in the
figure.

!"#!$# !%#

!&#

Suppose we have a training set (x1,x2, . . . ,xN), where each xi = (xi1, . . . , x
i
4)

is a vector containing values for all 4 random variables in the network.

1. Write down the likelihood and the log-likelihood of the training data
given a parameter setting of the Bayes net. Please use the following
notation.

(a) θijk = the conditional probability of node i taking on value k given
that the parents of i are in state j. In our example, i = 1, . . . , 4,
and k = 1, . . . , L. If i = 1, 2, 3, then j = 0, that is j is just a
dummy index since the first three nodes have no parents. If i = 4,
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then j = 1, . . . , L3.

(b) nijk = the number of training cases where node i takes on value
k and the parents of i are in state j.

P(X | θ)
=

∏
n=1:N P (xn1 , x

n
2 , x

n
3 , x

n
4 |θ)

=
∏

n=1:N P (xn4 |xn1 , xn2 , xn3 , θ)× P (xn3 |θ)× P (xn2 |θ)× P (xn1 |θ)
= (

∏
k=1:L θ

n10k
10k × θ

n20k
20k × θ

n30k
30k )× (

∏
k=1:L

∏
j=1:L3 θ

n4jk

4jk )

= (
∏

i=1:3

∏
k=1:L θ

ni0k
i0k )× (

∏
k=1:L

∏
j=1:L3 θ

n4jk

4jk )

log(P(X | θ))
= log((

∏
i=1:3

∏
k=1:L θ

ni0k
i0k )× (

∏
k=1:L

∏
j=1:L3 θ

n4jk

4jk ))

= (
∑

i=1:3

∑
k=1:L log(θni0ki0k )) + (

∑
k=1:L

∑
j=1:L3 log(θ

n4jk

4jk ))
= (

∑
i=1:3

∑
k=1:L ni0k × log(θi0k)) + (

∑
k=1:L

∑
j=1:L3 n4jk × log(θ4jk))

2. Show that with binary nodes (L = 2) the maximum likelihood param-
eter values θ̂ijk are the conditional frequencies observed in the data:

θ̂ijk =
nijk∑
k′ nijk′

Setting L=2:
(
∑

i=1:3

∑
k=1:2 ni0k × log(θi0k)) + (

∑
k=1:2

∑
j=1:8 n4jk × log(θ4jk))

= (
∑

i=1:3 ni01 × log(θi01) + ni02 × log(1− θi01))
+(

∑
j=1:8 n4j1 × log(θ4j1) + n4j2 × log(1− θ4j1))

Derivate and equal to zero:
∂log(P (X|θ))

∂θij1
= 0

=⇒ ∂(nij1×log(θij1)+nij2×log(1−θij1))
∂θij1

= 0

=⇒ nij1
θij1
− nij2

1−θij1 = 0

=⇒ θij1 × (nij1 + nij2) = nij1
=⇒ θij1 =

nij1∑
k′ nijk′

=⇒ θijk =
nijk∑
k′ nijk′

The maximum likelihood result holds generally for a Bayesian network
with discrete variables. I have given you a specific structure with binary
variables only for the sake of concreteness.
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Theory: Maximum Likelihood Parameter Estimation
for a Gaussian Distribution (12 marks)

Consider a Gaussian or Normal Distribution with parameters mean µ and
variance σ2 and probability density function f(x;µ, σ2). Suppose we have a
training set x = (x1, . . . , xN) of observed values for random variable X. Let
µ̂ and σ̂2 be the maximum likelihood estimates of the distribution parameters
estimated from the training set.

1. Write down the log-likelihood function L(x;µ, σ2).
Considering:

f(x;µ, σ2) = 1
σ
√
2π
e
−(x−µ)2

2σ2

P (D|µ, σ2) =
∏

i=1:N
1

σ
√
2π
e
−(xi−µ)2

2σ2

log(P (D|µ, σ2)) =
∑

i=1:N log( 1
σ
√
2π
e
−(xi−µ)2

2σ2 )

= N × log( 1
σ
√
2π

)− 1
2σ2

∑
i=1:N(xi − µ)2

2. Show that the maximum likelihood estimate for the distribution mean
is the sample mean: µ̂ = 1

N

∑N
i=1 x

i ≡ x.

∂(P (D|µ,σ2))
∂µ

= 0

=⇒
∂(N×log( 1

σ
√
2π

)− 1
2σ2

∑
i=1:N (xi−µ)2)

∂µ
= 0

=⇒
∑

i=1:N(xi − µ) = 0
=⇒

∑
i=1:N x

i = Nµ

=⇒ µ =
∑
i=1:N xi

N
≡ x̄

3. Show that the maximum likelihood estimate for the distribution vari-
ance is the sample variance: σ̂2 = 1

N

∑N
i=1(x

i − x)2 assuming that
µ = x.
∂(P (D|µ,σ))

∂σ
= 0

=⇒
∂(N×log( 1

σ
√
2π

)− 1
2σ2

∑
i=1:N (xi−µ)2)

∂σ
= 0

=⇒ −N
σ

+ 1
σ3

∑
i=1:N(xi − µ)2 = 0

=⇒ N
σ

= 1
σ3

∑
i=1:N(xi − µ)2

=⇒ σ2 = 1
N

∑
i=1:N(xi − µ)2

=⇒ σ2 = 1
N

∑
i=1:N(xi − x̄)2
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