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Neural Networks

AN
¢ Neural networks arise from attempts to model
human/animal brains
e Many models, many claims of biological plausibility
o We will focus on statistical and computational properties
rather than plausibility
¢ An artificial neural network is a general function
approximator

e The inner or hidden layers compute learned basis functions



Uses of Neural Networks

e Pros

Good for continuous input variables.

General continuous function approximators.

Highly non-linear.

Trainable basis functions.

Good to use in continuous domains with little knowledge:
e When you don’t know good features.
e You don’t know the form of a good functional model.

e Cons

e Not interpretable, “black box”.
e Learning is slow.
e Good generalization can require many datapoints.
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Function Approximation Demos

e Home Value of Hockey State https://user-images.
githubusercontent.com/22108101/
28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.
gjelel

e Function Learning Examples (open in Safari)
http://neuron.eng.wayne.edu/
bpFunctionApprox/bpFunctionApprox.html


https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Applications

There are many, many applications.

World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

Digit Recognition with 99.26% accuracy.

Speech Recognition
http://research.microsoft.com/en—-us/news/
features/speechrecognition-082911.aspx

http://deeplearning.net/demos/


http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://deeplearning.net/demos/
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Feed-forward Networks

See powerpoint for network pictures
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Feed-forward Networks

Non-linear Activation Functions

¢ Bad news: stacking linear regressions is equivalent to a
single linear regression.
e Simple approach: apply a non-linear function g to the linear
combination.
e Pass input in; through a non-linear activation function g(-)
to get output a; = g(in;)
e Model of an individual neuron

from Russell and Norvig, AIMA3e
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Non-linear Activation Functions

¢ Bad news: stacking linear regressions is equivalent to a
single linear regression.
e Simple approach: apply a non-linear function g to the linear
combination.
e Pass input in; through a non-linear activation function g(-)
to get output a; = g(in;)
e Model of an individual neuron

Bias Weight
ap= .= in:
0 W, a;= g(in))
in. -gf-
Input Input  Activation Output
Links Function ~ Function Output Links

from Russell and Norvig, AIMA3e
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Network of Neurons
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Feed-forward Networks

Activation Functions

e Can use a variety of activation functions
e Sigmoidal (S-shaped)
e Logistic sigmoid 1/(1 + exp(—a)) (useful for binary
classification)
e Hyperbolic tangent tanh

e Softmax
e Useful for multi-class classification
o Rectified Linear Unit (RLU) max(0, x)
e Should be differentiable for gradient-based learning (later)
e Can use different activation functions in each unit

e See http://aispace.org/neural/.


http://aispace.org/neural/

Feed-forward Networks

Function Composition

Think logic circuits
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Two opposite-facing sigmoids = ridge. Two ridges = bump.



Feed-forward Networks Network Training Error Backpropagation Theory: Backpropagation implements Gradient Descent  Applic:

The XOR Problem Revisited
X,
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The XOR Problem Solved

output k

hidden j

input i

X; X,
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Hidden Units Compute Basis Functions

e red dots = network function
e dashed line = hidden unit activation function.
e blue dots = data points
Network function is roughly the sum of activation functions.
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Hidden Units As Feature Extractors

EEFE

| 7

learned input-to-hidden weights

5

mEm

e 64 input nodes
¢ 2 hidden units
¢ |learned weight matrix at hidden units
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Network Training

Network Training

e Given a specified network structure, how do we set its
parameters (weights)?
e As usual, we define a criterion to measure how well our
network performs, optimize against it



Network Training

Network Training

Given a specified network structure, how do we set its
parameters (weights)?

e As usual, we define a criterion to measure how well our
network performs, optimize against it

Training data are (x,,y,)
Corresponds to neural net with multiple output nodes

Given a set of weight values w, the network defines a
function h,, (x).

Can train by minimizing L2 loss:

N
Ew) =3 ) ~ 3P = 3 S0k - ar)?
k

n=1 n=1

where k indexes the output nodes
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Parameter Optimization
E(w)

[ "
WA WwWpB

Wc

w2 VE

o For either of these problems, the error function E(w) is
nasty
¢ Nasty = non-convex
¢ Non-convex = has local minima



Network Training

Gradient Descent

The function A, (x) implemented by a network is
complicated.
No closed-form: Use gradient descent.

It isn’t obvious how to compute error function derivatives
with respect to hidden weights.

e The credit assignment problem.
Backpropagation solves the credit assignment problem

We will present the algorithm first, then prove that it
implements gradient descent
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Error Backpropagation

Error Backpropagation

e Backprop is an efficient method for computing error
derivatives aE for all weights in the network. Intuition:
1. Calculating derivatives for weights connected to output
nodes is easy.
2. Treat the derivatives as virtual “error”, compute derivative of
error for nodes in previous layer.
3. Repeat until you reach input nodes.
e This procedure propagates backwards the output error
signal through the network.

e Stochastic Gradient Descent: Fix input x = x,, and target
outputy =y,, resulting in error E,,.
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Error at the output nodes

e First, feed training example x, forward through the network,
storing all node activations a;



Error Backpropagation

Error at the output nodes

First, feed training example x,, forward through the network,
storing all node activations a;

Calculating derivatives for weights connected to output
nodes is easy.

o like logistic regression with input “features” g;
For output node k with activation a, = g(inx) = g(>_; wia;):

OE, 0 1
8wjk 8wjk 2

~(k — a)* = —aj x g'(ing) x (yk — a)

0 if no error, or if input a; from node j is 0.
Modified Error: 6, = ¢’ (in) (yx — ax)-
Gradient Descent Weight Update:

Wik <= Wi + o X a; X 0k



Error Backpropagation

Error at the hidden nodes

Consider a hidden node j connected to output nodes.

The modified error signal ¢; is node activation derivative,
times the weighted sum of contributions to the output
errors.

In symbols,
0 = g'(inj) Z Wik Ok
k

Weight Update:

w,-j%w,-quozxaixéj
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Backpropagation Picture

hidden

w0 O O

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

0 = g,(inj) Z Wik
k




4.

Error Backpropagation

The Backpropagation Algorithm

. Apply input vector x,, and forward propagate to find all

inputs in; and activation levels q;.
Evaluate the error signals d; for all output nodes.

Backpropagate the d; to obtain error signals ¢; for each
hidden node.

Update each weight vector w;.

Demo Alspace http://aispace.org/neural/.


http://aispace.org/neural/
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Theory: Backpropagation implements Gradient Descent
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Correctness Proof for Backpropagation Algorithm I.

g a; X Wy
n iy

Exercise: From this functional diagram find expressions for the
following quantities:

Bink
8ij

Qiny
° Oa;
diny
° Oin;
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Correctness Proof for Backpropagation Algorithm II.

P
a, in,

OE,
Wij

» We need to show that —<>2 = g; x ;.

e This follows easily given the following result

Theorem
For each node j, we have ¢; = —%.
J
; . OE, _ OE, Oinj _ e
¢ Proof given theorem: - == awf,- =4; - a;.

¢ Next we prove the theorem.
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Multi-variate Chain Rule

Wk

e For f(x,y), with f differentiable wrt x and y, and x and y
differentiable wrt u and v:

o _ oo ooy

ou  OxOu Oyodu
and

of of ox | Of 9y

ov Ox Ov 87)/0\/



Theory: Backpropagation implements Gradient Descent

Proof of Theorem, |

o We want to show that §; = — =,

e Think of the error as a functioh of the activation levels of

the nodes after node j.

e Formally, we can write gf;l" = a?n E,(inj,,in;,, ..., inj,) where

{j:} are the indices of the 'nodes that receive input from j.

a; X Wy,




We want to show that §; = —

Theory: Backpropagation implements Gradient Descent

Proof of Theorem, |

OEn

Think of the error as a functioh of the activation levels of
the nodes after node j.

Formally, we can write

OE, __ 0O
Oin;

= B E,(inj,,inj,, ...,

inj, ) where

{j:} are the indices of the 'nodes that receive input from j.

Now using the multi-variate chain rule, we have

OE,

Oinj

OF, diny

— Oiny. in;

We saw before that G = wj x g/ (in;).

8

a; X Wy,

)

ing
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Proof of Theorem, I

We want to show that §; = — G2
Proof by backward induction. Easy to see that the claim is
true for output nodes. (Exercise).

Inductive step: Consider node j and suppose that
O = —?TE: for all nodes k that receive input from j.

Using the multivariate chain rule, we have

m

8En Z _ 8En aink
k=1

8il’lj 6il’lk 8inj

"L Ding “ .
=D 5"871,- = g/ (in) = .
k=1 ’ k=1

where step 1 applies the inductive hypothesis, step 2 the
result from the previous slide, and step 3 the definition of 6;.
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Other Learning Topics

e Regularization: L2-regularizer (weight decay).
e Prune Weights: the Optimal Brain Method.
e Experimenting with Network Architectures is often key.
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Applications of Neural Networks

e Many success stories for neural networks

Credit card fraud detection
Hand-written digit recognition

Face detection

Autonomous driving (CMU ALVINN)
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Hand-written Digit Recognition

F ey /979 b6al
6757 863455
Z(79n/avsE
Wyl 90| ¢ 8% 9d
T 6l ¥4 415 E0
1789265 %1\ 97
2222d344d§0
a3 073657
Ol abqq bo2y¢?d

77 28n6cq 8 b/

e MNIST - standard dataset for hand-written digit recognition
e 60000 training, 10000 test images
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LeNet-5

C1: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ?

sexs2 S2: f. maps CS5: layer pg.
6@14x14 r rr 050" Fe:tayer QUTPUT

|
Full coanection ‘ Gaussian connections
Subsampling Convolutions  Subsampling Full connection

Convolutions

e LeNet developed by Yann LeCun et al.
e Convolutional neural network
e Local receptive fields (5x5 connectivity)
Subsampling (2x2)
Shared weights (reuse same 5x5 “filter”)
Breaking symmetry

e See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx



Applic:
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e The 82 errors made by LeNet5 (0.82% test error rate)



Conclusion

Feed-forward networks can be used for regression or
classification

o Similar to linear models, except with adaptive non-linear
basis functions
e These allow us to do more than e.g. linear decision
boundaries
Different error functions
Learning is more difficult, error function not convex
¢ Use stochastic gradient descent, obtain (good?) local
minimum
Backpropagation for efficient gradient computation

Applic:
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