
Fall 2017
CMPT 726: Assignment 1 Instructor: Oliver Schulte

Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Clas-
sification

For due date see https://courses.cs.sfu.ca

This assignment is to be done individually.

Important Note: The university policy on academic dishonesty (cheating) will be taken
very seriously in this course. You may not provide or use any solution, in whole or in part,
to or by another student. Any mark in this assignment may be changed on the basis of an
oral exam where you need to explain your solution.

You are encouraged to discuss the concepts involved in the questions with other students. If
you are in doubt as to what constitutes acceptable discussion, please ask! Further, please take
advantage of office hours offered by the instructor and the TA if you are having difficulties
with this assignment.

DO NOT:

• Give/receive code or proofs to/from other students

• Use Google to find solutions for assignment

DO:

• Meet with other students to discuss assignment (it is best not to take any notes during
such meetings, and to re-work assignment on your own)

• Use online resources (e.g. Wikipedia) to understand the concepts needed to solve the
assignment

Practice: Joint and Conditional Probabilities (10 marks)

Go to www.aispace.org and start the “belief and decision network” tool. Load the sample
file “File/Load Sample Problem/Simple Diagnostic Example”. If you have difficulty with the
UBC tool (e.g. Java doesn’t run, Simple Diagnostic isn’t found), I suggest you download the
jar file from the course website.

We will use this to test some of the basic probability laws. The AIspace tool can do many of
these calculations for you, but the purpose of the exercise is to learn the principles behind
the calculations. You can use the tool to check your answers, but you should compute them
yourself using the probability calculus together with the conditional probabilities from the
Bayesian network. Compute the following joint probabilities up to 6 significant digits.

1. Use the product formula of Bayes nets and the conditional probability parameters
specified by AIspace to compute the probability that: all nodes are true.
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2. Use the product formula of Bayes nets and the conditional probability parameters
specified by Aispace to compute the probability that: all nodes are true except for
Sore Throat, and that Sore Throat is false.

3. Show how can you use these two joint probabilities to compute the probability that: all
nodes other than Sore Throat are true. (Where the value of Sore Throat is unspecified.)

4. Verify the product formula:
P(all nodes are true) = P(Sore Throat = true | all other nodes are true) x P(all other
nodes are true).
You may get the first conditional probability by executing a query with the tool.

5. Compute the probability that Sore Throat is true and that Fever is true. (Hint: If you
use the right formula, you need only 4 conditional probabilities.)

You can enter the computed probabilities in the table below.
Probability to be Computed Your Result
P(all nodes true)
P(Sore Throat = False, all other nodes true)
P(all nodes other than Sore Throat true)
P(all nodes are true) = P(Sore Throat = true | all other
nodes are true) x P(all other nodes are true).
P(Sore Throat = true, Fever = True)

Theory: Conditional Probabilities (9 marks)

Exercise 13.3 in Russell and Norvig AMAI.

Theory: Expectations (5 marks)

Any function f(X) of a discrete random variable X defines a random variable. (Define
p(f(X) = y) =

∑
x:f(x)=y p(x).) Similarly, given a joint probability p(X1, . . . , Xn), any

function f(X1, . . . , Xn) is also a random variable. Show that the expected value of the sum
of two random variables is the sum of the expectations. In symbols, show that

E[X1 +X2] = E[X1] + E[X2]

Practice: Decision Tree Learning with ID3 (10 marks)

Figure 1 provides data about whether a customer will wait for a table in a restaurant or not.
Assume that ID3 splits first on the Pat attribute (for Patrons). Show the following for the
branch Pat = Full.
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1. The next attribute chosen by ID3. There may be a tie among several attributes; you
can list all or just one of them.

2. The expected information gain associated with the next attribute. Compare this with
the expected information gain for Hungry.

3. How you calculated the expected information gain.

Decision tree learning

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

16

Figure 1: Data Set for Question 5, Decision Tree Learning

Theory: Maximum Likelihood Parameter Estimation for Bayesian
Networks (8 marks)

Consider learning the parameters for the Bayesian network shown in the figure.

!"#!$# !%#

!&#

Suppose we have a training set (x1,x2, . . . ,xN), where each xi = (xi1, . . . , x
i
4) is a vector

containing values for all 4 random variables in the network.

1. Write down the likelihood and the log-likelihood of the training data given a parameter
setting of the Bayes net. Please use the following notation.
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(a) θijk = the conditional probability of node i taking on value k given that the
parents of i are in state j. In our example, i = 1, . . . , 4, and k = 1, . . . , L. If
i = 1, 2, 3, then j = 0, that is j is just a dummy index since the first three nodes
have no parents. If i = 4, then j = 1, . . . , L3.

(b) nijk = the number of training cases where node i takes on value k and the parents
of i are in state j.

2. Show that with binary nodes (L = 2) the maximum likelihood parameter values θ̂ijk
are the conditional frequencies observed in the data:

θ̂ijk =
nijk∑
k′ nijk′

The maximum likelihood result holds generally for a Bayesian network with discrete vari-
ables. I have given you a specific structure with binary variables only for the sake of con-
creteness.

Theory: Maximum Likelihood Parameter Estimation for a Gaus-
sian Distribution (12 marks)

Consider a Gaussian or Normal Distribution with parameters mean µ and variance σ2 and
probability density function f(x;µ, σ2). Suppose we have a training set x = (x1, . . . , xN) of
observed values for random variable X. Let µ̂ and σ̂2 be the maximum likelihood estimates
of the distribution parameters estimated from the training set.

1. Write down the log-likelihood function L(x;µ, σ2).

2. Show that the maximum likelihood estimate for the distribution mean is the sample
mean: µ̂ = 1

N

∑N
i=1 x

i ≡ x.

3. Show that the maximum likelihood estimate for the distribution variance is the sample
variance: σ̂2 = 1

N

∑N
i=1(x

i − x)2 assuming that µ = x.

Programming: Implement Maximum Likelihood Estimation for a
Gaussian Distribution (20 Marks)

Write a program for the following specifications (Python or Matlab preferred).

Input A single column of continuous values.

Output The maximum likelihood estimates µ̂ and σ̂2.

1. Apply your program to the column Weight in the assignment dataset (see course web-
site) and show the results.
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2. Apply your program to the column Weight conditional on 7 yr GP > 0 being true
and show the results.

3. Apply your program to the column Weight conditional on 7 yr GP > 0 being false
(i.e. 7 yr GP = 0 ) and show the results.

Programming: Implement the Naive Bayes Classifier for Hybrid
Data (20 Marks+ 5 Bonus)

Refer to the course website for the hockey player dataset.

1. Write down the Naive Bayes classifier formula for P (GP > 0 |x1 , . . . , xm) where the
x1, . . . , xm refer to the features in the dataset. Assume that continuous variables obey a
Gaussian distribution conditional on the class label. Use your procedure for estimating
Gaussian parameters from the problem above.

2. Implement your Naive Bayes classifier formula to assign a class to each player. Use
the draft years 1998,1999,2000 as training data and the draft year 2001 as test data.
What is the test accuracy of the Naive Bayes classifier with Gaussian class-conditional
distributions?

3. Bonus Question: A commonly used alternative to maximum likelihood estimation for
the Gaussian variance is Bessel’s bias correction:

s2 =
1

N − 1

N∑
i=1

(xi − x)2.

Does using s2 instead of σ̂2 change the test set accuracy, given the same training and
test set?

Submitting Your Assignment

You should create a report with the answers to questions and figures described above in PDF
format. Make sure it is clear what is shown in each figure. We would also like you to submit
your source code.

Submit your assignment using the online assignment submission server at: https://courses.
cs.sfu.ca.
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