Overview of Inference in First-Order Logic

Chapter 9

Outline

e Reducing first-order inference to propositional inference
e Unification

e Resolution

Two Approaches for Inference in FOL

Propositionalisation:
e Treat a first-order sentences as a template.

e Instantiating all variables with all possible constants gives a
set of ground propositional clauses.

o Apply efficient propositional solver, e.g. SAT.

Two Approaches for Inference in FOL

Propositionalisation:
e Treat a first-order sentences as a template.

e Instantiating all variables with all possible constants gives a
set of ground propositional clauses.

o Apply efficient propositional solver, e.g. SAT.

Lifted Inference:

e Generalize propositional methods for 1st-order methods.

Issue: dealing with variables and quantifiers

e Primary approach: resolution

Unification: instantiate variables where necessary.

Propositionalisation

e Easy case: A finite world in which all individuals have names

e E.g. the wumpus world, but also many planning, scheduling,
etc. problems

Propositionalisation

e Easy case: A finite world in which all individuals have names

e E.g. the wumpus world, but also many planning, scheduling,
etc. problems

o |dea:
e Replace a universally-quantified sentence with all of its
instances

e Replace an existentially-quantified sentence with a disjunction
of its instances

Propositionalisation

Easy case: A finite world in which all individuals have names
e E.g. the wumpus world, but also many planning, scheduling,
etc. problems
Idea:

e Replace a universally-quantified sentence with all of its
instances

e Replace an existentially-quantified sentence with a disjunction
of its instances

A formula (KB, etc.) with no variables is called ground

Inference procedure: Ground the KB and the query, and run
an inference procedure for propositional logic.

Universals

e E.g., Vx King(x) A Greedy(x) = Evil(x)
yields

King(John) A Greedy(John) = Evil(John)
King(Richard) N\ Greedy(Richard) = Evil(Richard)
King(carsa) N\ Greedy(carsa) = Evil(carsa)

Existentials

e E.g., Ix Likes(John, x)
yields

Likes(John, John) \/ Likes(John, Richard) V - - -V
Likes(John, carsa) V . ..

Existentials

e E.g., Ix Likes(John, x)
yields

Likes(John, John) \/ Likes(John, Richard) V - - -V
Likes(John, carsa) V . ..

@: What does "Everyone likes someone” look like?

Reduction to propositional inference

Suppose the KB contains just the following:
Vx King(x) A\ Greedy(x) = Evil(x)
King(John), Greedy(John), Brother(Richard, John)
Instantiating the universal sentence in all possible ways, we get
King(John) A Greedy(John) = Evil(John)
King(Richard) N\ Greedy(Richard) = Evil(Richard)
King(John), Greedy(John), Brother(Richard, John)

The new KB is propositionalized.

Proposition symbols are
King(John), Greedy(John), Evil(John), King(Richard), etc.

Problems with propositionalization

e Usually generates lots of irrelevant sentences.
e E.g., consider:

Vx King(x) A Greedy(x) = Evil(x),
Vy Greedy(y),
King(John), Brother(Richard, John)

o For query Evil(John), propositionalization produces lots of
facts (like Greedy(Richard)) that are irrelevant

e k-ary predicate and n constants = n* instances

Problems with propositionalization

Usually generates lots of irrelevant sentences.

E.g., consider:
Vx King(x) A Greedy(x) = Evil(x),
Vy Greedy(y),
King(John), Brother(Richard, John)
o For query Evil(John), propositionalization produces lots of
facts (like Greedy(Richard)) that are irrelevant

k

k-ary predicate and n constants = n® instances

However, many recent Al applications use propositionalization
for FO KBs over a finite domain.

e Has led to work in intelligent grounding.

Can make propositionalization work for arbitrary FO theories
1z See text for more

General FOL: Dealing with Variables

Consider the KB:
{ ¥x(Grad(x) = Student(x)), Vy(Student(y) = Happy(y)),
Grad(ZeNian), UGrad(Andrei) }
e Intuitively Happy(ZeNian) is inferrable.

e For such a deduction Andrei is irrelevant.

Idea: Try to limit instantiation of variables to useful instances.

Unification

e If two formulas can be made the same by substitutions of
variables, they are said to be unified

e Unification is the process of making 2 formulas (terms, etc)
the same by finding an appropriate substitution for variables.

Unification

e If two formulas can be made the same by substitutions of
variables, they are said to be unified

e Unification is the process of making 2 formulas (terms, etc)
the same by finding an appropriate substitution for variables.

e Consider:
Vx(Grad(x) = Student(x)), Grad(ZeNian)

Unification

If two formulas can be made the same by substitutions of
variables, they are said to be unified

Unification is the process of making 2 formulas (terms, etc)
the same by finding an appropriate substitution for variables.

Consider:
Vx(Grad(x) = Student(x)), Grad(ZeNian)
To obtain Student(ZeNian) we have the following steps:
e Figure out how to make Grad(x) and Grad(ZeNian) the same.
e This is easy: Bind x to ZeNian.

e Substituting, we get the rule instance:
Grad(ZeNian) = Student(ZeNian).
e Can now derive Student(ZeNian).

Unification Examples

Look for substitution 6 such that o = 36

Q ‘,B ‘9

Knows(John, x) | Knows(John, Jane)
Knows(John, x) | Knows(y, OJ)
Knows(John, x) | Knows(y, Mother(y))
Knows(John, x) | Knows(x, OJ)

Unification Examples

Look for substitution 6 such that o = 36

Q ‘,B ‘9

Knows(John, x) | Knows(John, Jane) {x/Jane}
Knows(John, x) | Knows(y, OJ)

Knows(John, x) | Knows(y, Mother(y))
Knows(John, x) | Knows(x, OJ)

Unification Examples

Look for substitution 6 such that o = 36

Q ‘,B ‘9

Knows(John, x) | Knows(John, Jane) {x/Jane}
Knows(John, x) | Knows(y, OJ) {x/0J,y/John}
Knows(John, x) | Knows(y, Mother(y))

Knows(John, x) | Knows(x, OJ)

Unification Examples

Look for substitution 6 such that o = 36

(07

g

0

Knows(John, x)
Knows(John, x)
Knows(John, x)

Knows(John, x)

Knows(John, Jane)
Knows(y, OJ)
Knows(y, Mother(y))

Knows(x, OJ)

{x/Jane}

{x/0J,y/John}

{y/John,
x/Mother(John)}

Unification Examples

Look for substitution 6 such that o = 36

Q I} 0

Knows(John, x) | Knows(John, Jane) {x/Jane}

Knows(John, x) | Knows(y, OJ) {x/0J,y/John}

Knows(John, x) | Knows(y, Mother(y)) | {y/John,
x/Mother(John)}

Knows(John, x) | Knows(x, OJ) fail

Problem: Can't substitute both John and OJ for x at the same

time.

Solution: Standardize variables apart:

e Replace Knows(x, OJ) with Knows(y, OJ)

Reasoning and Unification

Unification lets us work with both universally quantified
variables and arbitrary terms.

We can use unification in rules such as:
Parent(x, y) A Parent(y,z) = GrandParent(x, z)
where the variables are taken as being universally quantified.

Then forward chaining and backward chaining with unification
can be defined for such rules.

For backward chaining, following one line of development, one
ends up with the programming language Prolog.

Resolution: Brief summary

Resolution can be used in the first-order case (where it forms
the basis for much of theorem proving)
Full first-order version:

{1V G, bV G

(Cl v C2)9 where 619 = —|£29.

For example,

= Rich(x) vV Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 0 = {x/Ken}

For details see the text or CMPT 411.

Inference in FOL

For KB and query a:
e Convert KB A -« to CNF.

e This is trickier than in propositional logic, since we have to
deal with variables and quantifiers.

e Apply resolution steps to CNF(KB A —«)
e No longer guaranteed to terminate if satisfiable

== Complete for FOL

Summary

e Propositionalization

e Grounding approach: reduce all sentences to PL and apply
propositional inference techniques.

e FOL/Lifted inference techniques

e Propositional techniques + Unification.
e Generalized Modus Ponens
e Resolution-based inference.

e Many other aspects of FOL inference not discussed in class

