
Overview of Inference in First-Order Logic

Chapter 9



Outline

• Reducing first-order inference to propositional inference

• Unification

• Resolution



Two Approaches for Inference in FOL

Propositionalisation:

• Treat a first-order sentences as a template.

• Instantiating all variables with all possible constants gives a
set of ground propositional clauses.

• Apply efficient propositional solver, e.g. SAT.

Lifted Inference:

• Generalize propositional methods for 1st-order methods.

• Issue: dealing with variables and quantifiers

• Primary approach: resolution

• Unification: instantiate variables where necessary.
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Propositionalisation

• Easy case: A finite world in which all individuals have names
• E.g. the wumpus world, but also many planning, scheduling,

etc. problems

• Idea:
• Replace a universally-quantified sentence with all of its

instances
• Replace an existentially-quantified sentence with a disjunction

of its instances

• A formula (KB, etc.) with no variables is called ground

• Inference procedure: Ground the KB and the query, and run
an inference procedure for propositional logic.
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Universals

• E.g., ∀x King(x) ∧ Greedy(x)⇒ Evil(x)

yields

King(John) ∧ Greedy(John)⇒ Evil(John)
King(Richard) ∧ Greedy(Richard)⇒ Evil(Richard)
King(car54) ∧ Greedy(car54)⇒ Evil(car54)

. . .



Existentials

• E.g., ∃x Likes(John, x)

yields

Likes(John, John) ∨ Likes(John,Richard) ∨ · · · ∨
Likes(John, car54) ∨ . . .

Q: What does “Everyone likes someone” look like?
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Reduction to propositional inference

• Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x)⇒ Evil(x)
King(John), Greedy(John), Brother(Richard , John)

• Instantiating the universal sentence in all possible ways, we get
King(John) ∧ Greedy(John)⇒ Evil(John)
King(Richard) ∧ Greedy(Richard)⇒ Evil(Richard)
King(John), Greedy(John), Brother(Richard , John)

• The new KB is propositionalized.

• Proposition symbols are
King(John),Greedy(John),Evil(John),King(Richard), etc .



Problems with propositionalization

• Usually generates lots of irrelevant sentences.

• E.g., consider:
∀x King(x) ∧ Greedy(x)⇒ Evil(x),
∀y Greedy(y),
King(John), Brother(Richard , John)

• For query Evil(John), propositionalization produces lots of
facts (like Greedy(Richard)) that are irrelevant

• k-ary predicate and n constants ⇒ nk instances

• However, many recent AI applications use propositionalization
for FO KBs over a finite domain.

• Has led to work in intelligent grounding.

• Can make propositionalization work for arbitrary FO theories

+ See text for more
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General FOL: Dealing with Variables

Consider the KB:
{ ∀x(Grad(x)⇒ Student(x)), ∀y(Student(y)⇒ Happy(y)),

Grad(ZeNian), UGrad(Andrei) }

• Intuitively Happy(ZeNian) is inferrable.

• For such a deduction Andrei is irrelevant.

Idea: Try to limit instantiation of variables to useful instances.



Unification

• If two formulas can be made the same by substitutions of
variables, they are said to be unified

• Unification is the process of making 2 formulas (terms, etc)
the same by finding an appropriate substitution for variables.

• Consider:
∀x(Grad(x)⇒ Student(x)), Grad(ZeNian)

• To obtain Student(ZeNian) we have the following steps:
• Figure out how to make Grad(x) and Grad(ZeNian) the same.

• This is easy: Bind x to ZeNian.

• Substituting, we get the rule instance:
Grad(ZeNian)⇒ Student(ZeNian).

• Can now derive Student(ZeNian).
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Unification Examples

Look for substitution θ such that αθ = βθ

α β θ

Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y ,OJ)
Knows(John, x) Knows(y ,Mother(y))
Knows(John, x) Knows(x ,OJ)
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Unification Examples

Look for substitution θ such that αθ = βθ

α β θ

Knows(John, x) Knows(John, Jane) {x/Jane}
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Problem: Can’t substitute both John and OJ for x at the same
time.

Solution: Standardize variables apart:

• Replace Knows(x ,OJ) with Knows(y ,OJ)



Reasoning and Unification

• Unification lets us work with both universally quantified
variables and arbitrary terms.

• We can use unification in rules such as:
Parent(x , y) ∧ Parent(y , z)⇒ GrandParent(x , z)

where the variables are taken as being universally quantified.

• Then forward chaining and backward chaining with unification
can be defined for such rules.

+ For backward chaining, following one line of development, one
ends up with the programming language Prolog.



Resolution: Brief summary

• Resolution can be used in the first-order case (where it forms
the basis for much of theorem proving)

• Full first-order version:

`1 ∨ C1, `2 ∨ C2

(C1 ∨ C2)θ
where `1θ = ¬`2θ.

• For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)
with θ = {x/Ken}

• For details see the text or CMPT 411.



Inference in FOL

For KB and query α:

• Convert KB ∧ ¬α to CNF.
• This is trickier than in propositional logic, since we have to

deal with variables and quantifiers.

• Apply resolution steps to CNF (KB ∧ ¬α)
• No longer guaranteed to terminate if satisfiable

+ Complete for FOL



Summary

• Propositionalization

• Grounding approach: reduce all sentences to PL and apply
propositional inference techniques.

• FOL/Lifted inference techniques

• Propositional techniques + Unification.
• Generalized Modus Ponens
• Resolution-based inference.

• Many other aspects of FOL inference not discussed in class


