Overview of First-Order Logic

Chapter 8

Outline

- Why FOL?
- Syntax of FOL
- Expressing Sentences in FOL
- Wumpus world in FOL
- Knowledge Engineering

Pros and Cons of Propositional Logic (PC)

Pros:

- PC is declarative: formulas correspond to assertions.

Pros and Cons of Propositional Logic (PC)

Pros:

- PC is declarative: formulas correspond to assertions.
- PC allows incomplete information
(unlike most data structures and databases)

Pros and Cons of Propositional Logic (PC)

Pros:

- PC is declarative: formulas correspond to assertions.
- PC allows incomplete information
(unlike most data structures and databases)
- PC is compositional and unambiguous:
- truth of $B_{1,1} \wedge P_{1,2}$ depends on truth of $B_{1,1}$ and of $P_{1,2}$

Pros and Cons of Propositional Logic (PC)

Pros:

- PC is declarative: formulas correspond to assertions.
- PC allows incomplete information
(unlike most data structures and databases)
- PC is compositional and unambiguous:
- truth of $B_{1,1} \wedge P_{1,2}$ depends on truth of $B_{1,1}$ and of $P_{1,2}$
- Meaning in PC is context-independent
- Unlike natural language: Compare "Bring me the iron".
- "iron" could be an instrument for removing creases from clothes, a golf club, a piece of metal,
- "me" depends on who is doing the talking.

Pros and Cons of PC

Cons:

- PC has limited expressive power
- E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

- Propositional logic assumes the world is described by facts.

First-order logic

- Propositional logic assumes the world is described by facts.
- First-order logic assumes the world contains:

First-order logic

- Propositional logic assumes the world is described by facts.
- First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games, purchases, ...

- Think of nouns in a natural language

First-order logic

- Propositional logic assumes the world is described by facts.
- First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games, purchases, ...

- Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, ..., brother of, bigger than, likes, occurred after, owns, comes between, ...

First-order logic

- Propositional logic assumes the world is described by facts.
- First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games, purchases, ...

- Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, ..., brother of, bigger than, likes, occurred after, owns, comes between, ...

Functions: E.g. father of, best friend, plus, ...

Aside: Logics in General

There are lots of logics:

Logic	Ontological Commitment	Epistemological Commitment
Propositional logic First-order logic	facts facts, objects, relations	true/false/unknown true/false/unknown
Temporal logic Probability theory Fuzzy logic	facts, objects, relations, times facts facts + degree of truth	true/false/unknown true/false/unknown degree of belief known fuzzy value
Modal logic (logic of beliefs)	facts, possible worlds	true/false/unknown + necessarily $\mathrm{t} / \mathrm{f} / \mathrm{unkn}$
Description logic	concepts, roles, objects	true/false/unknown

Syntax of FOL: Basic Elements

- Constants:
- Stand for objects
- May be abstract - e.g. a marriage or a purchase
- E.g. Wumpus, 2, SFU, ...

Syntax of FOL: Basic Elements

- Constants:
- Stand for objects
- May be abstract - e.g. a marriage or a purchase
- E.g. Wumpus, 2, SFU, ...
- Predicate symbols:
- Stand for properties, relations
- E.g. Block(A), Brother(Richard, John), Plus(2, 3, 5), ...

Syntax of FOL: Basic Elements

- Constants:
- Stand for objects
- May be abstract - e.g. a marriage or a purchase
- E.g. Wumpus, 2, SFU, ...
- Predicate symbols:
- Stand for properties, relations
- E.g. Block(A), Brother(Richard, John), Plus(2, 3, 5), ...
- Functions:
- Stand for functions
- E.g. Sqrt, LeftLegOf(John), ...

Syntax of FOL: Basic Elements

- Constants: Wumpus, 2, SFU, ...
- Predicates: Brother, Plus, ...
- Functions: Sqrt, LeftLegOf, ...
- Variables: x, y, \ldots
- Connectives: $\wedge, \vee, \neg, \Rightarrow, \equiv$.
- Equality: =
- Quantifiers: \forall, \exists

And, strictly speaking, there is punctuation: "(", ")", ",".

Terms and Atomic Sentences

Basic idea with FOL:

- There are objects or things in the domain being described.
- Terms in the language denote objects.
- E.g. JohnQSmith, 12, CMPT310, favouriteCatOf(John), ...

Terms and Atomic Sentences

Basic idea with FOL:

- There are objects or things in the domain being described.
- Terms in the language denote objects.
- E.g. JohnQSmith, 12, CMPT310, favouriteCatOf(John), ...
- One makes assertions concerning these objects.
- Formulas in the language express assertions.
- E.g. Student(JohnQSmith), favouriteCatOf(John) = Fluffy, $\forall x$. BCUniv $(x) \Rightarrow(\neg$ HasMedSchool $(x) \vee x=U B C)$

And that's it!

Terms

- Term $=$ logical expression that refers to an object.

Terms

- Term $=$ logical expression that refers to an object.
- A term can be:
- a constant, such as Chris, car ${ }_{54}, \ldots$
- a function application such as LeftLegOf(Richard), Sqrt(2), Sqrt(Sqrt(2)), ...
- A term can contain variables
- When we get to formulas, we'll want variables to be quantified
- A term with no variables is called ground

Atomic Sentences

- An atomic sentences is the simplest sentence that can be true or false.

Atomic Sentences

- An atomic sentences is the simplest sentence that can be true or false.
- An atomic sentence is of the form predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$
- Example atomic sentences (and terms):
- Likes(Arvind, ZeNian) could be true or false
- BrotherOf(Mary, Sue) is false (for normal understanding of BrotherOf, Mary, Sue)
- Married(FatherOf(Richard), MotherOf(John)) could be true or false.
- There may be more than one way to express something. Compare:

MotherOf(John, Sue) - predicate vs.
Sue $=$ MotherOf(John) - function.

Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:

$$
\neg S,\left(S_{1} \wedge S_{2}\right),\left(S_{1} \vee S_{2}\right),\left(S_{1} \Rightarrow S_{2}\right),\left(S_{1} \equiv S_{2}\right)
$$

Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:

$$
\neg S,\left(S_{1} \wedge S_{2}\right),\left(S_{1} \vee S_{2}\right),\left(S_{1} \Rightarrow S_{2}\right),\left(S_{1} \equiv S_{2}\right)
$$

- Examples:
- $\operatorname{Red}\left(\operatorname{car}_{54}\right) \wedge \neg \operatorname{Red}\left(\operatorname{car}_{54}\right)$

Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:

$$
\neg S,\left(S_{1} \wedge S_{2}\right),\left(S_{1} \vee S_{2}\right),\left(S_{1} \Rightarrow S_{2}\right),\left(S_{1} \equiv S_{2}\right)
$$

- Examples:
- $\operatorname{Red}\left(\operatorname{car}_{54}\right) \wedge \neg \operatorname{Red}\left(\operatorname{car}_{54}\right)$
- Sibling(Joe, Alice) \Rightarrow Sibling(Alice, Joe)

Complex Sentences

- Complex sentences are made from atomic sentences using the connectives of propositional logic:

$$
\neg S,\left(S_{1} \wedge S_{2}\right),\left(S_{1} \vee S_{2}\right),\left(S_{1} \Rightarrow S_{2}\right),\left(S_{1} \equiv S_{2}\right)
$$

- Examples:
- $\operatorname{Red}\left(\right.$ car $\left._{54}\right) \wedge \neg \operatorname{Red}\left(\right.$ car $\left._{54}\right)$
- Sibling(Joe, Alice) \Rightarrow Sibling(Alice, Joe)
- King (Richard) \vee King(John)
- King(Richard) $\Rightarrow \neg$ King(John)
- Purchase $(p) \wedge$

$$
\begin{aligned}
& \operatorname{Buyer}(p)=\operatorname{John} \wedge \\
& \operatorname{Object} \operatorname{Type}(p)=\operatorname{Bike}
\end{aligned}
$$

- Semantics is the same as in propositional logic

Variables

- Student(John) is true or false and says something about a specific individual, John.
- We can be much more flexible if we allow variables which can range over element of the domain.

Variables

- Student(John) is true or false and says something about a specific individual, John.
- We can be much more flexible if we allow variables which can range over element of the domain.
- Now allow sentences of the form:

$$
(\forall x S),(\exists x S)
$$

- $(\forall x S)$ is true if no matter what x refers to, S is true.
- $(\exists x S)$ is true if there is some element of the domain for which S is true.

Universal Quantification

Form: $\forall\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \operatorname{At}(x, S F U) \Rightarrow \operatorname{Smart}(x)$

Universal Quantification

Form: $\forall\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \operatorname{At}(x, S F U) \Rightarrow \operatorname{Smart}(x)$
- Every number has a successor: $\forall x \operatorname{Num}(x) \Rightarrow \operatorname{NNum}(\operatorname{Succ}(x))$

Universal Quantification

Form: $\forall\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make statements about all objects that have certain properties.
- Everyone at SFU is smart: $\forall x \operatorname{At}(x, S F U) \Rightarrow \operatorname{Smart}(x)$
- Every number has a successor:
$\forall x \operatorname{Num}(x) \Rightarrow \operatorname{NNum}(\operatorname{Succ}(x))$
- Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{array}{ll}
(\text { At (Joe, SFU }) \Rightarrow \operatorname{Smart}(\text { Joe })) & \wedge \\
(\text { At }(\text { Alice }, \text { SFU }) \Rightarrow \operatorname{Smart}(\text { Alice })) & \wedge \\
(\text { At }(\text { SFU, SFU }) \Rightarrow \operatorname{Smart}(\text { SFU })) & \wedge \ldots
\end{array}
$$

- Aside: Formulas are finite in length, so universal quantification in general can't be expressed as a big conjunction.

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :

$$
\forall x(\operatorname{At}(x, S F U) \wedge \operatorname{Smart}(x))
$$

means
"Everyone is at SFU and everyone is smart"
and not
"Everyone at SFU is smart".

Existential Quantification

Form: $\exists\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x(\operatorname{At}(x$, UVic $) \wedge \operatorname{Smart}(x))$

Existential Quantification

Form: $\exists\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x(\operatorname{At}(x$, UVic $) \wedge \operatorname{Smart}(x))$
- There is a SFU student with a top GPA:

Existential Quantification

Form: $\exists\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x(\operatorname{At}(x$, UVic $) \wedge \operatorname{Smart}(x))$
- There is a SFU student with a top GPA:
$\exists x($ Student $(x) \wedge \forall y($ Student $(y) \Rightarrow G E(G P A(x), G P A(y))))$

Existential Quantification

Form: $\exists\langle$ variables $\rangle\langle$ sentence \rangle

- Allows us to make a statement about an object without naming it.
- Someone at UVic is smart: $\exists x(\operatorname{At}(x$, UVic $) \wedge \operatorname{Smart}(x))$
- There is a SFU student with a top GPA:

$$
\exists x(\operatorname{Student}(x) \wedge \forall y(\operatorname{Student}(y) \Rightarrow G E(G P A(x), G P A(y))))
$$

- Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{array}{ll}
(\text { At }(\text { Joe }, \text { UVic }) \wedge \operatorname{Smart}(\text { Joe })) & \vee \\
(\text { At }(\text { Alice, UVic }) \wedge \operatorname{Smart}(\text { Alice })) & \vee \\
(\text { At }(\text { SFU }, \text { UVic }) \wedge \operatorname{Smart}(\text { SFU })) & \vee \ldots
\end{array}
$$

- But again, we cannot have an infinite disjuntion!

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: Using \Rightarrow as the main connective with \exists :

$$
\exists x(\operatorname{At}(x, \text { UVic }) \Rightarrow \operatorname{Smart}(x))
$$

is true if (among other possibilities) there is someone who is not at UVic!

- On the other hand:

$$
\exists x(A t(x, U V i c) \wedge \operatorname{Smart}(x))
$$

is true if there is someone who is at UVic and is smart.

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$ (why?)

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \forall y$ is not the same as $\forall y \exists x$:

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \forall y$ is not the same as $\forall y \exists x$:
- $\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone"
- $\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone is loved by at least one person"

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$ (why?)
- $\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
- $\exists x \forall y$ is not the same as $\forall y \exists x$:
- $\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone"
- $\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone is loved by at least one person"
- Quantifier duality: each can be expressed using the other

$$
\begin{aligned}
& \forall x \operatorname{Likes}(x, \text { IceCream }) \equiv \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) \\
& \exists x \operatorname{Likes}(x, \text { Broccoli }) \equiv \neg \forall x \neg \operatorname{Likes}(x, \text { Broccoli })
\end{aligned}
$$

Like De Morgan's Rule

Expressing Sentences in FOL

- Brothers are siblings

Expressing Sentences in FOL

- Brothers are siblings
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$.

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric
$\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric
$\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
- One's mother is one's female parent

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric
$\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
- One's mother is one's female parent
$\forall x, y(\operatorname{Mother}(x, y) \equiv(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$.

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric
$\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
- One's mother is one's female parent $\forall x, y(\operatorname{Mother}(x, y) \equiv(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$.
- A first cousin is a child of a parent's sibling

Expressing Sentences in FOL

- Brothers are siblings

$$
\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))
$$

- "Sibling" is symmetric
$\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
- One's mother is one's female parent
$\forall x, y(\operatorname{Mother}(x, y) \equiv(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$.
- A first cousin is a child of a parent's sibling
$\forall x, y($ FirstCousin $(x, y) \equiv$
$\exists p, p s(\operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge \operatorname{Parent}(p s, y)))$

Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: "sibling is symmetric" and "a brother is a sibling".

Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: "sibling is symmetric" and "a brother is a sibling". $\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$.

Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: "sibling is symmetric" and "a brother is a sibling". $\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$.
- Compare: "a dog is a mammal" and "Anne is a student".

Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes ambiguity.

- Compare: "sibling is symmetric" and "a brother is a sibling". $\forall x, y(\operatorname{Sibling}(x, y) \equiv \operatorname{Sibling}(y, x))$.
$\forall x, y(\operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y))$.
- Compare: "a dog is a mammal" and "Anne is a student". $\forall x(\operatorname{Dog}(x) \Rightarrow \operatorname{Mammal}(x))$.
Student(Anne).

Equality

- $t_{1}=t_{2}$ is true iff t_{1} and t_{2} refer to the same object

Equality

- $t_{1}=t_{2}$ is true iff t_{1} and t_{2} refer to the same object
- E.g., definition of Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \equiv[\neg(x=y) \wedge \\
& \exists m, f(\neg(m=f) \wedge \\
& \quad \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \\
& P \text { Parent }(m, y) \wedge \operatorname{Parent}(f, y))]
\end{aligned}
$$

Equality

- $t_{1}=t_{2}$ is true iff t_{1} and t_{2} refer to the same object
- E.g., definition of Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \equiv[\neg(x=y) \wedge \\
& \exists m, f(\neg(m=f) \wedge \\
& \quad \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \\
& P \text { Parent }(m, y) \wedge \operatorname{Parent}(f, y))]
\end{aligned}
$$

- Aside: Better is:
$\forall x, y \operatorname{Sibling}(x, y) \equiv[\neg(x=y) \wedge \exists m, f(\operatorname{Mother}(m, x) \wedge$
Father $(f, x) \wedge \operatorname{Mother}(m, y) \wedge$ Father $(f, y))$]
+ definitions of Mother and Father.
As with programming, it is important how you express a domain.

Equality

Don't confuse \equiv and $=$.

Equality

Don't confuse \equiv and $=$.

- $\alpha \equiv \beta$ says that α and β share the same truth value
- \equiv is a relation between formulas
- E.g. $a \wedge b \equiv b \wedge a$.

Equality

Don't confuse \equiv and $=$.

- $\alpha \equiv \beta$ says that α and β share the same truth value
- \equiv is a relation between formulas
- E.g. $a \wedge b \equiv b \wedge a$.
- $t_{1}=t_{2}$ says that t_{1} and t_{2} refer to the same individual
- = is a relation between terms
- E.g. CapitalOf $(B C)=$ Victoria.

Interacting with FOL KBs

- An agent needs to interact with its KB.
- Regarding a $K B$ as an $A D T$, there are two primary operations, TELL and $A S K$.

Interacting with FOL KBs

- An agent needs to interact with its $K B$.
- Regarding a $K B$ as an $A D T$, there are two primary operations, TELL and ASK.
- We want to $T E L L$ things to the KB, e.g.
$\operatorname{TELL}(K B, \forall x(\operatorname{Grad}(x) \Rightarrow \operatorname{Student}(x)))$ $\operatorname{TELL}(K B, \operatorname{Grad}($ Alice $))$
- These sentences are assertions

Interacting with FOL KBs

- An agent needs to interact with its KB .
- Regarding a $K B$ as an $A D T$, there are two primary operations, TELL and ASK.
- We want to $T E L L$ things to the KB, e.g.
$\operatorname{TELL}(K B, \forall x(\operatorname{Grad}(x) \Rightarrow \operatorname{Student}(x)))$
$\operatorname{TELL}(K B, \operatorname{Grad}($ Alice $))$
- These sentences are assertions
- We also want to $A S K$ things of a $K B$, ASK (KB, $\exists x$ Student (x))
- These are queries or goals
- The KB should output x where $\operatorname{Student}(x)$ is true:
$\{x /$ Alice,$\ldots\}$

Interacting with FOL KBs: The Wumpus
 World

- Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Interacting with FOL KBs: The Wumpus

World

- Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:
- Express by the percept sentence:

Tell(KB, Percept([Smell, Breeze, None, None, None], 5))

Interacting with FOL KBs: The Wumpus

World

- Suppose a wumpus-world agent is using a FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:
- Express by the percept sentence:

Tell(KB, Percept([Smell, Breeze, None, None, None], 5))

- Then:
$\operatorname{Ask}(K B, \exists \operatorname{Action}(a, 5))$
- I.e., does $K B$ entail any particular actions at $t=5$?
- Ask solves this and returns $\{a /$ Shoot $\}$

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so $\operatorname{Smelt}(t)$.

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so Smelt (t).

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow \operatorname{Action}(G r a b, t)$

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so $\operatorname{Smelt}(t)$.

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow$ Action $(G r a b, t)$
- Reflex with internal state: Do we have the gold already? $\forall t$ AtGold $(t) \wedge \neg$ Holding (Gold, $t) \Rightarrow$ Action (Grab, t)

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so $\operatorname{Smelt}(t)$.

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow$ Action $(G r a b, t)$
- Reflex with internal state: Do we have the gold already? $\forall t$ AtGold $(t) \wedge \neg$ Holding (Gold, $t) \Rightarrow$ Action (Grab, t)
- Note that Holding(Gold, t) cannot be observed
must keep track of change

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so $\operatorname{Smelt}(t)$.

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow \operatorname{Action}(G r a b, t)$
- Reflex with internal state: Do we have the gold already? $\forall t$ AtGold $(t) \wedge \neg$ Holding (Gold, $t) \Rightarrow$ Action $($ Grab, $t)$
- Note that Holding(Gold, t) cannot be observed
must keep track of change
- Q: If we know Holding(Gold, t) can we conclude Holding (Gold, $t+1$)?

Knowledge in the Wumpus World

- Need to specify axioms about the wumpus world; for example:
- "Perception"

$$
\begin{aligned}
& \forall b, g, t, m, c \operatorname{Percept}([\operatorname{Smell}, b, g, m, c], t) \Rightarrow \operatorname{Smelt}(t) \\
& \forall s, b, t, m, c \operatorname{Percept}([s, b, G \operatorname{litter}, m, c], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

Aside: Must keep track of time, and so $\operatorname{Smelt}(t)$.

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow \operatorname{Action}(G r a b, t)$
- Reflex with internal state: Do we have the gold already? $\forall t$ AtGold $(t) \wedge \neg$ Holding (Gold, $t) \Rightarrow$ Action $($ Grab, t)
- Note that Holding(Gold, t) cannot be observed
must keep track of change
- Q: If we know Holding(Gold, t) can we conclude Holding(Gold, $t+1$)?
- Ans: No

Representing Information

- Need to remember properties of locations:

$$
\begin{aligned}
& \forall x, t \operatorname{At}(\text { Agent }, x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x) \\
& \forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)
\end{aligned}
$$

- Need to be careful that all information is represented. Consider "Squares are breezy near a pit":

Representing Information

- Need to remember properties of locations:

$$
\begin{aligned}
& \forall x, t \operatorname{At}(\text { Agent }, x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x) \\
& \forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)
\end{aligned}
$$

- Need to be careful that all information is represented. Consider "Squares are breezy near a pit":
- Diagnostic rule - infer cause from effect
$\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)$
- Causal rule - infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

Representing Information

- Need to remember properties of locations:

$$
\begin{aligned}
& \forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Smelt}(t) \Rightarrow \operatorname{Smelly}(x) \\
& \forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(x)
\end{aligned}
$$

- Need to be careful that all information is represented. Consider "Squares are breezy near a pit":
- Diagnostic rule - infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

- Causal rule - infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

- Neither of these is complete - e.g., the causal rule doesn't say whether squares far away from pits can be breezy
- Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \equiv[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Knowledge Engineering in FOL

(1) Identify the task
(2) Assemble the relevant knowledge
(3) Decide on a vocabulary of predicates, functions, and constants
(4) Encode general knowledge about the domain
(5) Encode a description of the specific problem instance
(6) Pose queries to the inference procedure and get answers
(7) Debug the knowledge base.

Knowledge Engineering in FOL

(1) Identify the task
(2) Assemble the relevant knowledge
(3) Decide on a vocabulary of predicates, functions, and constants
(4) Encode general knowledge about the domain
(5) Encode a description of the specific problem instance
(6) Pose queries to the inference procedure and get answers
(7) Debug the knowledge base.

Aside: This is pretty much the same as designing a database schema + instance.

The Electronic Circuits Domain

The Electronic Circuits Domain

1. Identify the task

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

The Electronic Circuits Domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Different possibilities:
- Function: Type $\left(X_{1}\right)=X O R$
- Binary predicate: Type $\left(X_{1}, X O R\right)$
- Unary predicate: $\operatorname{XOR}\left(X_{1}\right)$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$
- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Connected}\left(p_{2}, p_{1}\right)$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$
- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow$ Connected $\left(p_{2}, p_{1}\right)$
- $\forall g \operatorname{Type}(g)=O R \Rightarrow$
$\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=1$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$
- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow$ Connected $\left(p_{2}, p_{1}\right)$
- $\forall g \operatorname{Type}(g)=O R \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=1
$$

- $\forall g \operatorname{Type}(g)=A N D \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=0 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=0
$$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$
- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow$ Connected $\left(p_{2}, p_{1}\right)$
- $\forall g \operatorname{Type}(g)=O R \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=1
$$

- $\forall g \operatorname{Type}(g)=A N D \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=0 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=0
$$

- $\forall g$ Type $(g)=X O R \Rightarrow$
$\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \operatorname{Signal}(\operatorname{In}(1, g)) \neq \operatorname{Signal}(\operatorname{In}(2, g))$

The Electronic Circuits Domain

4. Encode general knowledge of the domain:

- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow \operatorname{Signal}\left(p_{1}\right)=\operatorname{Signal}\left(p_{2}\right)$
- $\forall p \operatorname{Signal}(p)=1 \vee \operatorname{Signal}(p)=0$
- $1 \neq 0$
- $\forall p_{1}, p_{2} \operatorname{Connected}\left(p_{1}, p_{2}\right) \Rightarrow$ Connected $\left(p_{2}, p_{1}\right)$
- $\forall g \operatorname{Type}(g)=O R \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=1
$$

- $\forall g \operatorname{Type}(g)=A N D \Rightarrow$

$$
\operatorname{Signal}(\operatorname{Out}(1, g))=0 \equiv \exists n \operatorname{Signal}(\operatorname{In}(n, g))=0
$$

- $\forall g$ Type $(g)=X O R \Rightarrow$
$\operatorname{Signal}(\operatorname{Out}(1, g))=1 \equiv \operatorname{Signal}(\operatorname{In}(1, g)) \neq \operatorname{Signal}(\operatorname{In}(2, g))$
- $\forall g \operatorname{Type}(g)=N O T \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, g)) \neq \operatorname{Signal}(\operatorname{In}(1, g))$

The Electronic Circuits Domain

5. Encode the specific problem instance:
$\operatorname{Type}\left(X_{1}\right)=X O R$
$\operatorname{Type}\left(A_{1}\right)=A N D$
$\operatorname{Type}\left(O_{1}\right)=O R$

$$
\begin{aligned}
& \operatorname{Type}\left(X_{2}\right)=X O R \\
& \operatorname{Type}\left(A_{2}\right)=A N D
\end{aligned}
$$

Connected $\left(\operatorname{Out}\left(1, X_{1}\right), \operatorname{In}\left(2, A_{2}\right)\right) \quad$ Connected $\left(\ln \left(1, C_{1}\right), \operatorname{In}\left(1, A_{1}\right)\right)$
Connected $\left(\operatorname{Out}\left(1, A_{2}\right), \ln \left(1, O_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, C_{1}\right), \operatorname{In}\left(2, X_{1}\right)\right)$
Connected $\left(\operatorname{Out}\left(1, A_{1}\right), \operatorname{In}\left(2, O_{1}\right)\right) \quad$ Connected $\left(\ln \left(2, C_{1}\right), \operatorname{In}\left(2, A_{1}\right)\right)$
Connected $\left(\operatorname{Out}\left(1, X_{2}\right), \operatorname{Out}\left(1, C_{1}\right)\right)$ Connected $\left(\operatorname{In}\left(3, C_{1}\right), \operatorname{In}\left(2, X_{2}\right)\right)$
Connected $\left(\operatorname{Out}\left(1, O_{1}\right), \operatorname{Out}\left(2, C_{1}\right)\right)$ Connected $\left(\operatorname{In}\left(3, C_{1}\right), \operatorname{In}\left(1, A_{2}\right)\right)$

The Electronic Circuits Domain

6. Pose queries to the inference procedure

- E.g. what are the outputs, given a set of input signals?
- I.e.

$$
\exists o_{1}, o_{2}
$$

$$
\left(\operatorname{Signal}\left(\ln \left(1, C_{1}\right)\right)=1 \wedge \operatorname{Signa}\left(\left(\ln \left(2, C_{1}\right)\right)=0 \wedge\right.\right.
$$

$$
\text { Signal } \left.\left(\ln \left(3, C_{1}\right)\right)=1\right)
$$

$$
\left(\operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=o_{1} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, C_{1}\right)\right)=o_{2}\right)
$$

The Electronic Circuits Domain

6. Pose queries to the inference procedure

- E.g. what are the outputs, given a set of input signals?
- I.e.

$$
\exists o_{1}, o_{2}
$$

$$
\left(\operatorname{Signal}\left(\ln \left(1, C_{1}\right)\right)=1 \wedge \operatorname{Signa}\left(\left(\ln \left(2, C_{1}\right)\right)=0 \wedge\right.\right.
$$

$$
\text { Signal } \left.\left(\ln \left(3, C_{1}\right)\right)=1\right)
$$

$$
\stackrel{\left.\operatorname{Signal}\left(\operatorname{Out}\left(1, C_{1}\right)\right)=o_{1} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, C_{1}\right)\right)=o_{2}\right), ~}{\Rightarrow}
$$

7. Debug the knowledge base

- E.g. may have omitted assertions like $0 \neq 1$.

Summary

- First-order logic:
- Much more expressive than propositional logic
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- FOL is harder to reason with
- Undecidable in general

