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Pros and Cons of Propositional Logic (PC)

Pros:
e PC is declarative: formulas correspond to assertions.
e PC allows incomplete information
(unlike most data structures and databases)
e PC is compositional and unambiguous:
o truth of By ; A P> depends on truth of By ; and of Py
e Meaning in PC is context-independent

e Unlike natural language: Compare “Bring me the iron”.

e ‘“iron" could be an instrument for removing creases from
clothes, a golf club, a piece of metal, ....
® “me” depends on who is doing the talking.



Pros and Cons of PC

Cons:
e PC has limited expressive power

e E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square
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First-order logic

e Propositional logic assumes the world is described by facts.

e First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games,
purchases, ...

e Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, ...,
brother of, bigger than, likes, occurred after, owns, comes
between, ...

Functions: E.g. father of, best friend, plus, ...



Aside: Logics in General

There are lots of logics:

First-order logic

facts, objects, relations

Logic Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false/unknown

true/false/unknown

Temporal logic

Probability theory
Fuzzy logic

facts, objects, relations,
times
facts
facts + degree of truth

true/false/unknown
true/false/unknown
degree of belief
known fuzzy value

Modal logic
(logic of beliefs)

facts, possible worlds

true/false/unknown +
necessarily t/f/unkn

’ Description logic

|

concepts, roles, objects

true/false/unknown




Syntax of FOL: Basic Elements

e Constants:

e Stand for objects
e May be abstract — e.g. a marriage or a purchase
e E.g. Wumpus, 2, SFU, ...



Syntax of FOL: Basic Elements

e Constants:
e Stand for objects
e May be abstract — e.g. a marriage or a purchase
e E.g. Wumpus, 2, SFU, ...

e Predicate symbols:

e Stand for properties, relations
e E.g. Block(A), Brother(Richard, John), Plus(2,3,5), ...



Syntax of FOL: Basic Elements

e Constants:

e Stand for objects

e May be abstract — e.g. a marriage or a purchase

e E.g. Wumpus, 2, SFU, ...
e Predicate symbols:

e Stand for properties, relations

e E.g. Block(A), Brother(Richard, John), Plus(2,3,5), ...
e Functions:

e Stand for functions
e E.g. Sqrt, LeftLegOf (John), ...



Syntax of FOL: Basic Elements

Constants: Wumpus, 2, SFU, ...
Predicates: Brother, Plus, ...
Functions: Sqrt, LeftLegOf, ...

e Variables: x, y, ...

e Connectives: A, V, =, =, =.
e Equality: =

e Quantifiers: V, 3

And, strictly speaking, there is punctuation: “(", )", “,".
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e Terms in the language denote objects.
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Terms and Atomic Sentences

Basic idea with FOL:
e There are objects or things in the domain being described.
e Terms in the language denote objects.
e E.g. JohnQSmith, 12, CMPT310, favouriteCatOf (John), ...
e One makes assertions concerning these objects.
e Formulas in the language express assertions.
e E.g. Student(JohnQSmith),
favouriteCatOf (John) = Fluffy,
Vx. BCUniv(x) = (~HasMedSchool(x) V x = UBC)

And that's it!
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Terms

Term = logical expression that refers to an object.

A term can be:

e a constant, such as Chris, carsg, ...
e a function application such as LeftLegOf (Richard), Sqrt(2),

Sqrt(Sqrt(2)), ...
A term can contain variables
e When we get to formulas, we'll want variables to be quantified

A term with no variables is called ground
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Atomic Sentences

An atomic sentences is the simplest sentence that can be true
or false.

An atomic sentence is of the form predicate(termy, ..., term,)
or termp = termo
Example atomic sentences (and terms):

o Likes(Arvind, ZeNian) could be true or false

o BrotherOf (Mary, Sue) is false (for normal understanding of
BrotherOf, Mary, Sue)

o Married(FatherOf (Richard), MotherOf (John)) could be true
or false.

There may be more than one way to express something.
Compare:

MotherOf (John, Sue) — predicate Vs.

Sue = MotherOf (John) — function.
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Complex Sentences

e Complex sentences are made from atomic sentences using the
connectives of propositional logic:
=S, (51 VAN 52), (51 V 52), (51 = 52), (51 = 52)
e Examples:
e Red(carsq) A —Red(carss)
o Sibling(Joe, Alice) = Sibling(Alice, Joe)
o King(Richard) vV King(John)
o King(Richard) = —King(John)
o Purchase(p) A
Buyer(p) = John A
Object Type(p) = Bike

e Semantics is the same as in propositional logic
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e Student(John) is true or false and says something about a
specific individual, John.

e \We can be much more flexible if we allow variables which can
range over element of the domain.



Variables

e Student(John) is true or false and says something about a
specific individual, John.

e \We can be much more flexible if we allow variables which can
range over element of the domain.
e Now allow sentences of the form:
(VxS), (3xS)

e (VxS) is true if no matter what x refers to, S is true.
e (3xS) is true if there is some element of the domain for which
S is true.
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Universal Quantification

Form: V(variables)(sentence)

Allows us to make statements about all objects that have
certain properties.

Everyone at SFU is smart: Vx At(x, SFU) = Smart(x)

Every number has a successor:
Vx NNum(x) = NNum(Succ(x))

Roughly speaking, equivalent to the conjunction of
instantiations of P

(At(Joe, SFU) = Smart(Joe)) A
(At(Alice, SFU) = Smart(Alice)) A
(At(SFU, SFU) = Smart(SFU)) A...

Aside: Formulas are finite in length, so universal quantification
in general can't be expressed as a big conjunction.



A common mistake to avoid

e Typically, = is the main connective with ¥

e Common mistake: using A as the main connective with V:
Vx(At(x, SFU) A Smart(x))

means
“Everyone is at SFU and everyone is smart”

and not
"Everyone at SFU is smart”.
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Existential Quantification
Form: J(variables)(sentence)
e Allows us to make a statement about an object without
naming it.
e Someone at UVic is smart: Ix(At(x, UVic) A Smart(x))
There is a SFU student with a top GPA:
Ix(Student(x) AVy(Student(y) = GE(GPA(x), GPA(y))))

Roughly speaking, equivalent to the disjunction of
instantiations of P

(At(Joe, UVic) A Smart(Joe)) Y
(At(Alice, UVic) A Smart(Alice)) Vv
(At(SFU, UVic) A Smart(SFU)) V...

But again, we cannot have an infinite disjuntion!



Another common mistake to avoid

e Typically, A is the main connective with 3

e Common mistake: Using = as the main connective with 3:
Ix(At(x, UVic) = Smart(x))

is true if (among other possibilities) there is someone who is
not at UVic!

e On the other hand:
Ix(At(x, UVic) A Smart(x))

is true if there is someone who is at UVic and is smart.
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Properties of Quantifiers

VxVy is the same as VyVx (why?)
dx3Jy is the same as Jy3Ix (why?)

dxVy is not the same as Vydx:

e IxVy Loves(x,y)
“There is a person who loves everyone”
e Vy3dx Loves(x,y)
“Everyone is loved by at least one person”

Quantifier duality: each can be expressed using the other

Vx Likes(x, lceCream) = —3x —Likes(x, IceCream)
Ix Likes(x, Broccoli) = —Vx —Likes(x, Broccoli)

1 Like De Morgan's Rule
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Expressing Sentences in FOL

Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).
“Sibling” is symmetric
Vx,y (Sibling(x,y) = Sibling(y, x)).
One’s mother is one's female parent
Vx,y (Mother(x,y) = (Female(x) A Parent(x, y))).

A first cousin is a child of a parent’s sibling
Vx,y (FirstCousin(x,y) =
3p, ps(Parent(p, x) A Sibling(ps, p) A Parent(ps, y)))
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Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes
ambiguity.
e Compare: “sibling is symmetric” and “a brother is a sibling”.
Vx, y(Sibling(x,y) = Sibling(y, x)).
Vx, y(Brother(x, y) = Sibling(x,y)).

e Compare: “a dog is a mammal” and "Anne is a student”.
Vx(Dog(x) = Mammal(x)).
Student(Anne).
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Equality

e t; = tpis true iff t; and t, refer to the same object
e E.g., definition of Sibling in terms of Parent:
Vx,y Sibling(x,y) = [~(x=y) A
Im, f (=(m=1f) A
Parent(m, x) A Parent(f,x) A
Parent(m,y) A Parent(f,y))]

e Aside: Better is:
Vx,y Sibling(x,y) = [~(x = y) A 3Im, f (Mother(m, x)A\
Father(f,x) A Mother(m, y) A Father(f,y))]
+ definitions of Mother and Father.

1w As with programming, it is important how you express a
domain.
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Equality
Don't confuse = and =.

e o = [ says that « and 3 share the same truth value
e = is a relation between formulas
e Eg. aAb = bAa
e t; = tp says that t; and t refer to the same individual

e — is a relation between terms
e E.g. CapitalOf (BC) = Victoria.
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Interacting with FOL KBs

e An agent needs to interact with its KB.

e Regarding a KB as an ADT, there are two primary operations,
TELL and ASK.
e We want to TELL things to the KB, e.g.
TELL(KB,Vx(Grad(x) = Student(x)))
TELL(KB, Grad(Alice))

e These sentences are assertions

e We also want to ASK things of a KB,
ASK (KB, 3x Student(x))

e These are queries or goals

e The KB should output x where Student(x) is true:
{x/Alice, ...}
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e Suppose a wumpus-world agent is using a FOL KB and
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Interacting with FOL KBs: The Wumpus
World

e Suppose a wumpus-world agent is using a FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:
e Express by the percept sentence:
Tell(KB, Percept([Smell, Breeze, None, None, None],5))
e Then:
Ask(KB,JaAction(a,5))

e l.e., does KB entail any particular actions at t = 57
o Ask solves this and returns {a/Shoot}



Knowledge in the Wumpus World

e Need to specify axioms about the wumpus world; for example:

o “Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).
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Knowledge in the Wumpus World

Need to specify axioms about the wumpus world; for example:

“Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).

Reflex: V't AtGold(t) = Action(Grab, t)
Reflex with internal state: Do we have the gold already?
Vt AtGold(t) A —Holding(Gold, t) = Action(Grab, t)
Note that Holding(Gold, t) cannot be observed
= must keep track of change

Q: If we know Holding(Gold, t) can we conclude
Holding(Gold, t +1)?
e Ans: No



Representing Information

e Need to remember properties of locations:
Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)
Vx, t At(Agent,x,t) A Breeze(t) = Breezy(x)
e Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:



Representing Information

e Need to remember properties of locations:
Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)
Vx, t At(Agent,x,t) A Breeze(t) = Breezy(x)
e Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:

e Diagnostic rule — infer cause from effect

Yy Breezy(y) = 3xPit(x) A Adjacent(x,y)
o Causal rule — infer effect from cause

Vx,y Pit(x) A Adjacent(x,y) = Breezy(y)



Representing Information

Need to remember properties of locations:

Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)

Vx, t At(Agent,x,t) A\ Breeze(t) = Breezy(x)
Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:

e Diagnostic rule — infer cause from effect

Yy Breezy(y) = 3xPit(x) A Adjacent(x,y)

e Causal rule — infer effect from cause

Vx,y Pit(x) A Adjacent(x,y) = Breezy(y)

Neither of these is complete — e.g., the causal rule doesn't say
whether squares far away from pits can be breezy

Definition for the Breezy predicate:
Yy Breezy(y) = [3x Pit(x) A Adjacent(x, y)]



Knowledge Engineering in FOL

@ Identify the task

® Assemble the relevant knowledge

© Decide on a vocabulary of predicates, functions, and constants
O Encode general knowledge about the domain

® Encode a description of the specific problem instance

® Pose queries to the inference procedure and get answers

@ Debug the knowledge base.



Knowledge Engineering in FOL

@ Identify the task

® Assemble the relevant knowledge

© Decide on a vocabulary of predicates, functions, and constants
O Encode general knowledge about the domain

® Encode a description of the specific problem instance

® Pose queries to the inference procedure and get answers

@ Debug the knowledge base.

Aside: This is pretty much the same as designing a database
schema + instance.
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The Electronic Circuits Domain

1. Identify the task

e Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

e Composed of wires and gates; Types of gates (AND, OR,
XOR, NOT)
o Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
e Different possibilities:
e Function: Type(Xi1) = XOR
e Binary predicate: Type(X1, XOR)
e Unary predicate: XOR(X1)
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The Electronic Circuits Domain
. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =0

140

Vp1, p2 Connected(p1, p2) = Connected(p2, p1)

Vg Type(g) = OR =

Signal(Out(1,g)) =1 = 3n Signal(In(n,g)) =1
Vg Type(g) = AND =
Signal(Out(1,g)) =0 = 3n Signal(In(n,g)) =0
Vg Type(g) = XOR =
Signal(Out(1,g)) =1 = Signal(In(1, g)) # Signal(In(2, g))

= NOT = Signal(Out(1, g)) # Signal(In(1, g))

~—

Vg Type(g



The Electronic Circuits Domain

5. Encode the specific problem instance:

Type(X1) = XOR Type(X2) = XOR

Type(A1) = AND Type(A2) = AND

Type(01) = OR

Connected(Out(1,X1), In(1,X2))  Connected(In(1,Cy1), In(1,X1))
Connected(Out(1,X1), In(2,A2))  Connected(In(1,Cy1), In(1,A1))
Connected(Out(1,A2), In(1,01))  Connected(In(2,Cy), In(2,X1))
Connected(Out(1,A1), In(2,01))  Connected(In(2,C1), In(2,A1))
Connected(Out(1,X2), Out(1,C1)) Connected(In(3,Cy), In(2,X2))
Connected(Out(1,0;), Out(2,Cy)) Connected(In(3,C1), In(1,A7))



The Electronic Circuits Domain

6. Pose queries to the inference procedure

e E.g. what are the outputs, given a set of input signals?
o le.
3017 (o))
(Signal(In(1, G;)) = 1 A Signal(In(2, G1)) =0 A
Signal(In(3, G1)) = 1)
=
(Signal(Out(1, C;)) = o1 A Signal(Out(2, (1)) = 07)
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6. Pose queries to the inference procedure

e E.g. what are the outputs, given a set of input signals?
o le.
3017 (o))
(Signal(In(1, G;)) = 1 A Signal(In(2, G1)) =0 A
Signal(In(3, G1)) = 1)
=
(Signal(Out(1, C;)) = o1 A Signal(Out(2, (1)) = 07)

7. Debug the knowledge base

e E.g. may have omitted assertions like 0 # 1.



Summary

e First-order logic:

e Much more expressive than propositional logic

e objects and relations are semantic primitives

e syntax: constants, functions, predicates, equality, quantifiers
e FOL is harder to reason with

e Undecidable in general



