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Pros and Cons of Propositional Logic (PC)

Pros:

• PC is declarative: formulas correspond to assertions.

• PC allows incomplete information
(unlike most data structures and databases)

• PC is compositional and unambiguous:
• truth of B1,1 ∧ P1,2 depends on truth of B1,1 and of P1,2

• Meaning in PC is context-independent

• Unlike natural language: Compare “Bring me the iron”.
• “iron” could be an instrument for removing creases from

clothes, a golf club, a piece of metal, . . . .
• “me” depends on who is doing the talking.
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Pros and Cons of PC

Cons:

• PC has limited expressive power

• E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square



First-order logic

• Propositional logic assumes the world is described by facts.

• First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games,
purchases, . . .

• Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, . . . ,
brother of, bigger than, likes, occurred after, owns, comes
between, . . .

Functions: E.g. father of, best friend, plus, . . .
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Aside: Logics in General

There are lots of logics:

Logic Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, true/false/unknown
times true/false/unknown

Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known fuzzy value

Modal logic facts, possible worlds true/false/unknown +
(logic of beliefs) necessarily t/f/unkn

Description logic concepts, roles, objects true/false/unknown



Syntax of FOL: Basic Elements

• Constants:
• Stand for objects
• May be abstract – e.g. a marriage or a purchase
• E.g. Wumpus, 2, SFU, . . .

• Predicate symbols:
• Stand for properties, relations
• E.g. Block(A), Brother(Richard , John), Plus(2, 3, 5), . . .

• Functions:
• Stand for functions
• E.g. Sqrt, LeftLegOf (John), . . .



Syntax of FOL: Basic Elements

• Constants:
• Stand for objects
• May be abstract – e.g. a marriage or a purchase
• E.g. Wumpus, 2, SFU, . . .

• Predicate symbols:
• Stand for properties, relations
• E.g. Block(A), Brother(Richard , John), Plus(2, 3, 5), . . .

• Functions:
• Stand for functions
• E.g. Sqrt, LeftLegOf (John), . . .



Syntax of FOL: Basic Elements

• Constants:
• Stand for objects
• May be abstract – e.g. a marriage or a purchase
• E.g. Wumpus, 2, SFU, . . .

• Predicate symbols:
• Stand for properties, relations
• E.g. Block(A), Brother(Richard , John), Plus(2, 3, 5), . . .

• Functions:
• Stand for functions
• E.g. Sqrt, LeftLegOf (John), . . .



Syntax of FOL: Basic Elements

• Constants: Wumpus, 2, SFU, . . .

• Predicates: Brother , Plus, . . .

• Functions: Sqrt, LeftLegOf , . . .

• Variables: x , y , . . .

• Connectives: ∧, ∨, ¬, ⇒, ≡.

• Equality: =

• Quantifiers: ∀, ∃

And, strictly speaking, there is punctuation: “(”, “)”, “,”.



Terms and Atomic Sentences

Basic idea with FOL:

• There are objects or things in the domain being described.
• Terms in the language denote objects.
• E.g. JohnQSmith, 12, CMPT 310, favouriteCatOf (John), ...

• One makes assertions concerning these objects.
• Formulas in the language express assertions.
• E.g. Student(JohnQSmith),

favouriteCatOf (John) = Fluffy ,
∀x . BCUniv(x)⇒ (¬HasMedSchool(x) ∨ x = UBC )

And that’s it!
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Terms

• Term = logical expression that refers to an object.

• A term can be:
• a constant, such as Chris, car54, . . .
• a function application such as LeftLegOf (Richard), Sqrt(2),

Sqrt(Sqrt(2)), . . .

• A term can contain variables
• When we get to formulas, we’ll want variables to be quantified

• A term with no variables is called ground
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Atomic Sentences

• An atomic sentences is the simplest sentence that can be true
or false.

• An atomic sentence is of the form predicate(term1, . . . , termn)
or term1 = term2

• Example atomic sentences (and terms):
• Likes(Arvind ,ZeNian) could be true or false
• BrotherOf (Mary ,Sue) is false (for normal understanding of

BrotherOf , Mary , Sue)
• Married(FatherOf (Richard),MotherOf (John)) could be true

or false.

• There may be more than one way to express something.
Compare:

MotherOf (John,Sue) – predicate vs.
Sue = MotherOf (John) – function.
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Complex Sentences

• Complex sentences are made from atomic sentences using the
connectives of propositional logic:
¬S , (S1 ∧ S2), (S1 ∨ S2), (S1 ⇒ S2), (S1 ≡ S2)

• Examples:
• Red(car54) ∧ ¬Red(car54)
• Sibling(Joe,Alice)⇒ Sibling(Alice, Joe)
• King(Richard) ∨ King(John)
• King(Richard)⇒ ¬King(John)
• Purchase(p) ∧

Buyer(p) = John ∧
ObjectType(p) = Bike

• Semantics is the same as in propositional logic
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Variables

• Student(John) is true or false and says something about a
specific individual, John.

• We can be much more flexible if we allow variables which can
range over element of the domain.

• Now allow sentences of the form:
(∀xS), (∃xS)

• (∀xS) is true if no matter what x refers to, S is true.
• (∃xS) is true if there is some element of the domain for which

S is true.
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Universal Quantification

Form: ∀〈variables〉〈sentence〉

• Allows us to make statements about all objects that have
certain properties.

• Everyone at SFU is smart: ∀x At(x ,SFU)⇒ Smart(x)

• Every number has a successor:
∀x NNum(x)⇒ NNum(Succ(x))

• Roughly speaking, equivalent to the conjunction of
instantiations of P

(At(Joe,SFU)⇒ Smart(Joe)) ∧
(At(Alice,SFU)⇒ Smart(Alice)) ∧
(At(SFU,SFU)⇒ Smart(SFU)) ∧ . . .

• Aside: Formulas are finite in length, so universal quantification
in general can’t be expressed as a big conjunction.
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A common mistake to avoid

• Typically, ⇒ is the main connective with ∀
• Common mistake: using ∧ as the main connective with ∀:

∀x(At(x ,SFU) ∧ Smart(x))

means
“Everyone is at SFU and everyone is smart”

and not
”Everyone at SFU is smart”.



Existential Quantification

Form: ∃〈variables〉〈sentence〉

• Allows us to make a statement about an object without
naming it.

• Someone at UVic is smart: ∃x(At(x ,UVic) ∧ Smart(x))

• There is a SFU student with a top GPA:
∃x(Student(x)∧∀y(Student(y)⇒ GE (GPA(x),GPA(y))))

• Roughly speaking, equivalent to the disjunction of
instantiations of P

(At(Joe,UVic) ∧ Smart(Joe)) ∨
(At(Alice,UVic) ∧ Smart(Alice)) ∨
(At(SFU,UVic) ∧ Smart(SFU)) ∨ . . .

• But again, we cannot have an infinite disjuntion!
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Another common mistake to avoid

• Typically, ∧ is the main connective with ∃
• Common mistake: Using ⇒ as the main connective with ∃:

∃x(At(x ,UVic)⇒ Smart(x))

is true if (among other possibilities) there is someone who is
not at UVic!

• On the other hand:

∃x(At(x ,UVic) ∧ Smart(x))

is true if there is someone who is at UVic and is smart.



Properties of Quantifiers

• ∀x∀y is the same as ∀y∀x (why?)

• ∃x∃y is the same as ∃y∃x (why?)

• ∃x∀y is not the same as ∀y∃x :
• ∃x∀y Loves(x , y)

“There is a person who loves everyone”
• ∀y∃x Loves(x , y)

“Everyone is loved by at least one person”

• Quantifier duality: each can be expressed using the other

∀x Likes(x , IceCream) ≡ ¬∃x ¬Likes(x , IceCream)
∃x Likes(x ,Broccoli) ≡ ¬∀x ¬Likes(x ,Broccoli)

+ Like De Morgan’s Rule
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Expressing Sentences in FOL

• Brothers are siblings

∀x , y (Brother(x , y)⇒ Sibling(x , y)).

• “Sibling” is symmetric
∀x , y (Sibling(x , y) ≡ Sibling(y , x)).

• One’s mother is one’s female parent
∀x , y (Mother(x , y) ≡ (Female(x) ∧ Parent(x , y))).

• A first cousin is a child of a parent’s sibling
∀x , y (FirstCousin(x , y) ≡

∃p, ps(Parent(p, x)∧Sibling(ps, p)∧Parent(ps, y)))
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Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes
ambiguity.

• Compare: “sibling is symmetric” and “a brother is a sibling”.

∀x , y(Sibling(x , y) ≡ Sibling(y , x)).
∀x , y(Brother(x , y)⇒ Sibling(x , y)).

• Compare: “a dog is a mammal” and “Anne is a student”.
∀x(Dog(x)⇒ Mammal(x)).
Student(Anne).
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Equality

• t1 = t2 is true iff t1 and t2 refer to the same object

• E.g., definition of Sibling in terms of Parent:

∀x , y Sibling(x , y) ≡ [¬(x = y) ∧
∃m, f (¬(m = f ) ∧

Parent(m, x) ∧ Parent(f , x) ∧
Parent(m, y) ∧ Parent(f , y))]

• Aside: Better is:
∀x , y Sibling(x , y) ≡ [¬(x = y) ∧ ∃m, f (Mother(m, x)∧

Father(f , x) ∧Mother(m, y) ∧ Father(f , y))]
+ definitions of Mother and Father .

+ As with programming, it is important how you express a
domain.
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Equality

Don’t confuse ≡ and =.

• α ≡ β says that α and β share the same truth value
• ≡ is a relation between formulas
• E.g. a ∧ b ≡ b ∧ a.

• t1 = t2 says that t1 and t2 refer to the same individual
• = is a relation between terms
• E.g. CapitalOf (BC ) = Victoria.
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Interacting with FOL KBs

• An agent needs to interact with its KB.

• Regarding a KB as an ADT, there are two primary operations,
TELL and ASK .

• We want to TELL things to the KB, e.g.
TELL(KB, ∀x(Grad(x)⇒ Student(x)))
TELL(KB,Grad(Alice))

• These sentences are assertions

• We also want to ASK things of a KB,
ASK (KB,∃x Student(x))

• These are queries or goals
• The KB should output x where Student(x) is true:

{x/Alice, . . . }
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Interacting with FOL KBs: The Wumpus
World

• Suppose a wumpus-world agent is using a FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:

• Express by the percept sentence:
Tell(KB,Percept([Smell ,Breeze,None,None,None], 5))

• Then:
Ask(KB,∃aAction(a, 5))

• I.e., does KB entail any particular actions at t = 5?
• Ask solves this and returns {a/Shoot}
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Knowledge in the Wumpus World

• Need to specify axioms about the wumpus world; for example:

• “Perception”
∀b, g , t,m, c Percept([Smell , b, g ,m, c], t)⇒ Smelt(t)
∀s, b, t,m, c Percept([s, b,Glitter ,m, c], t)⇒ AtGold(t)

+ Aside: Must keep track of time, and so Smelt(t).

• Reflex: ∀t AtGold(t)⇒ Action(Grab, t)

• Reflex with internal state: Do we have the gold already?
∀t AtGold(t) ∧ ¬Holding(Gold , t)⇒ Action(Grab, t)

• Note that Holding(Gold , t) cannot be observed

+ must keep track of change

• Q: If we know Holding(Gold , t) can we conclude
Holding(Gold , t + 1)?

• Ans: No
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Representing Information

• Need to remember properties of locations:
∀x , t At(Agent, x , t) ∧ Smelt(t)⇒ Smelly(x)
∀x , t At(Agent, x , t) ∧ Breeze(t)⇒ Breezy(x)

• Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:

• Diagnostic rule – infer cause from effect
∀y Breezy(y)⇒ ∃xPit(x) ∧ Adjacent(x , y)

• Causal rule – infer effect from cause
∀x , y Pit(x) ∧ Adjacent(x , y)⇒ Breezy(y)

• Neither of these is complete – e.g., the causal rule doesn’t say
whether squares far away from pits can be breezy

• Definition for the Breezy predicate:
∀y Breezy(y) ≡ [∃x Pit(x) ∧ Adjacent(x , y)]
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Knowledge Engineering in FOL

1 Identify the task

2 Assemble the relevant knowledge

3 Decide on a vocabulary of predicates, functions, and constants

4 Encode general knowledge about the domain

5 Encode a description of the specific problem instance

6 Pose queries to the inference procedure and get answers

7 Debug the knowledge base.

Aside: This is pretty much the same as designing a database
schema + instance.
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The Electronic Circuits Domain

1. Identify the task

• Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

• Composed of wires and gates; Types of gates (AND, OR,
XOR, NOT)

• Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
• Different possibilities:

• Function: Type(X1) = XOR
• Binary predicate: Type(X1,XOR)
• Unary predicate: XOR(X1)
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The Electronic Circuits Domain

4. Encode general knowledge of the domain:

• ∀p1, p2 Connected(p1, p2)⇒ Signal(p1) = Signal(p2)

• ∀p Signal(p) = 1 ∨ Signal(p) = 0

• 1 6= 0

• ∀p1, p2 Connected(p1, p2)⇒ Connected(p2, p1)

• ∀g Type(g) = OR ⇒
Signal(Out(1, g)) = 1 ≡ ∃n Signal(In(n, g)) = 1

• ∀g Type(g) = AND ⇒
Signal(Out(1, g)) = 0 ≡ ∃n Signal(In(n, g)) = 0

• ∀g Type(g) = XOR ⇒
Signal(Out(1, g)) = 1 ≡ Signal(In(1, g)) 6= Signal(In(2, g))

• ∀g Type(g) = NOT ⇒ Signal(Out(1, g)) 6= Signal(In(1, g))
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• ∀g Type(g) = NOT ⇒ Signal(Out(1, g)) 6= Signal(In(1, g))



The Electronic Circuits Domain

5. Encode the specific problem instance:

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1), In(1,X2)) Connected(In(1,C1), In(1,X1))
Connected(Out(1,X1), In(2,A2)) Connected(In(1,C1), In(1,A1))
Connected(Out(1,A2), In(1,O1)) Connected(In(2,C1), In(2,X1))
Connected(Out(1,A1), In(2,O1)) Connected(In(2,C1), In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1), In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1), In(1,A2))



The Electronic Circuits Domain

6. Pose queries to the inference procedure

• E.g. what are the outputs, given a set of input signals?
• I.e.
∃o1, o2

(Signal(In(1,C1)) = 1 ∧ Signal(In(2,C1)) = 0 ∧
Signal(In(3,C1)) = 1)

⇒
(Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2)

7. Debug the knowledge base

• E.g. may have omitted assertions like 0 6= 1.
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Summary

• First-order logic:
• Much more expressive than propositional logic
• objects and relations are semantic primitives
• syntax: constants, functions, predicates, equality, quantifiers

• FOL is harder to reason with
• Undecidable in general


