Overview of First-Order Logic

Chapter 8



Why FOL?

Syntax of FOL

Expressing Sentences in FOL
Wumpus world in FOL

Knowledge Engineering

Outline



Pros and Cons of Propositional Logic (PC)

Pros:

e PC is declarative: formulas correspond to assertions.



Pros and Cons of Propositional Logic (PC)

Pros:
e PC is declarative: formulas correspond to assertions.

e PC allows incomplete information
(unlike most data structures and databases)



Pros and Cons of Propositional Logic (PC)

Pros:
e PC is declarative: formulas correspond to assertions.
e PC allows incomplete information
(unlike most data structures and databases)

e PC is compositional and unambiguous:
o truth of By ; A P> depends on truth of By ; and of Py



Pros and Cons of Propositional Logic (PC)

Pros:
e PC is declarative: formulas correspond to assertions.
e PC allows incomplete information
(unlike most data structures and databases)
e PC is compositional and unambiguous:
o truth of By ; A P> depends on truth of By ; and of Py
e Meaning in PC is context-independent

e Unlike natural language: Compare “Bring me the iron”.

e ‘“iron" could be an instrument for removing creases from
clothes, a golf club, a piece of metal, ....
® “me” depends on who is doing the talking.



Pros and Cons of PC

Cons:
e PC has limited expressive power

e E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square



First-order logic

e Propositional logic assumes the world is described by facts.



First-order logic

e Propositional logic assumes the world is described by facts.

e First-order logic assumes the world contains:



First-order logic

e Propositional logic assumes the world is described by facts.

e First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games,
purchases, ...

e Think of nouns in a natural language



First-order logic

e Propositional logic assumes the world is described by facts.

e First-order logic assumes the world contains:
Objects: E.g. people, houses, numbers, colors, hockey games,
purchases, ...

e Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, ...,
brother of, bigger than, likes, occurred after, owns, comes
between, ...



First-order logic

e Propositional logic assumes the world is described by facts.

e First-order logic assumes the world contains:

Objects: E.g. people, houses, numbers, colors, hockey games,
purchases, ...

e Think of nouns in a natural language

Relations: E.g. red, round, honest, prime, ...,
brother of, bigger than, likes, occurred after, owns, comes
between, ...

Functions: E.g. father of, best friend, plus, ...



Aside: Logics in General

There are lots of logics:

First-order logic

facts, objects, relations

Logic Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false/unknown

true/false/unknown

Temporal logic

Probability theory
Fuzzy logic

facts, objects, relations,
times
facts
facts + degree of truth

true/false/unknown
true/false/unknown
degree of belief
known fuzzy value

Modal logic
(logic of beliefs)

facts, possible worlds

true/false/unknown +
necessarily t/f/unkn

’ Description logic

|

concepts, roles, objects

true/false/unknown




Syntax of FOL: Basic Elements

e Constants:

e Stand for objects
e May be abstract — e.g. a marriage or a purchase
e E.g. Wumpus, 2, SFU, ...



Syntax of FOL: Basic Elements

e Constants:
e Stand for objects
e May be abstract — e.g. a marriage or a purchase
e E.g. Wumpus, 2, SFU, ...

e Predicate symbols:

e Stand for properties, relations
e E.g. Block(A), Brother(Richard, John), Plus(2,3,5), ...



Syntax of FOL: Basic Elements

e Constants:

e Stand for objects

e May be abstract — e.g. a marriage or a purchase

e E.g. Wumpus, 2, SFU, ...
e Predicate symbols:

e Stand for properties, relations

e E.g. Block(A), Brother(Richard, John), Plus(2,3,5), ...
e Functions:

e Stand for functions
e E.g. Sqrt, LeftLegOf (John), ...



Syntax of FOL: Basic Elements

Constants: Wumpus, 2, SFU, ...
Predicates: Brother, Plus, ...
Functions: Sqrt, LeftLegOf, ...

e Variables: x, y, ...

e Connectives: A, V, =, =, =.
e Equality: =

e Quantifiers: V, 3

And, strictly speaking, there is punctuation: “(", )", “,".



Terms and Atomic Sentences

Basic idea with FOL:
e There are objects or things in the domain being described.

e Terms in the language denote objects.
e E.g. JohnQSmith, 12, CMPT310, favouriteCatOf (John), ...



Terms and Atomic Sentences

Basic idea with FOL:
e There are objects or things in the domain being described.
e Terms in the language denote objects.
e E.g. JohnQSmith, 12, CMPT310, favouriteCatOf (John), ...
e One makes assertions concerning these objects.
e Formulas in the language express assertions.
e E.g. Student(JohnQSmith),
favouriteCatOf (John) = Fluffy,
Vx. BCUniv(x) = (~HasMedSchool(x) V x = UBC)

And that's it!



Terms

e Term = logical expression that refers to an object.



Terms

Term = logical expression that refers to an object.

A term can be:

e a constant, such as Chris, carsg, ...
e a function application such as LeftLegOf (Richard), Sqrt(2),

Sqrt(Sqrt(2)), ...
A term can contain variables
e When we get to formulas, we'll want variables to be quantified

A term with no variables is called ground



Atomic Sentences

e An atomic sentences is the simplest sentence that can be true
or false.



Atomic Sentences

An atomic sentences is the simplest sentence that can be true
or false.

An atomic sentence is of the form predicate(termy, ..., term,)
or termp = termo
Example atomic sentences (and terms):

o Likes(Arvind, ZeNian) could be true or false

o BrotherOf (Mary, Sue) is false (for normal understanding of
BrotherOf, Mary, Sue)

o Married(FatherOf (Richard), MotherOf (John)) could be true
or false.

There may be more than one way to express something.
Compare:

MotherOf (John, Sue) — predicate Vs.

Sue = MotherOf (John) — function.



Complex Sentences

e Complex sentences are made from atomic sentences using the
connectives of propositional logic:
=S, (51 VAN 52), (51 V 52), (51 = 52), (51 = 52)



Complex Sentences

e Complex sentences are made from atomic sentences using the
connectives of propositional logic:
=S, (51 A\ 52), (51 V 52), (51 = 52), (51 = 52)
e Examples:
e Red(carsq) A —Red(carss)



Complex Sentences

e Complex sentences are made from atomic sentences using the
connectives of propositional logic:
=S, (51 A 52), (51 vV 52), (51 = 52), (51 = 52)
e Examples:

e Red(carsq) A —Red(carss)
o Sibling(Joe, Alice) = Sibling(Alice, Joe)



Complex Sentences

e Complex sentences are made from atomic sentences using the
connectives of propositional logic:
=S, (51 VAN 52), (51 V 52), (51 = 52), (51 = 52)
e Examples:
e Red(carsq) A —Red(carss)
o Sibling(Joe, Alice) = Sibling(Alice, Joe)
o King(Richard) vV King(John)
o King(Richard) = —King(John)
o Purchase(p) A
Buyer(p) = John A
Object Type(p) = Bike

e Semantics is the same as in propositional logic



Variables

e Student(John) is true or false and says something about a
specific individual, John.

e \We can be much more flexible if we allow variables which can
range over element of the domain.



Variables

e Student(John) is true or false and says something about a
specific individual, John.

e \We can be much more flexible if we allow variables which can
range over element of the domain.
e Now allow sentences of the form:
(VxS), (3xS)

e (VxS) is true if no matter what x refers to, S is true.
e (3xS) is true if there is some element of the domain for which
S is true.



Universal Quantification
Form: V(variables)(sentence)

o Allows us to make statements about all objects that have
certain properties.

e Everyone at SFU is smart: Vx At(x, SFU) = Smart(x)



Universal Quantification
Form: V(variables)(sentence)

o Allows us to make statements about all objects that have
certain properties.
e Everyone at SFU is smart: Vx At(x, SFU) = Smart(x)

e Every number has a successor:
Vx NNum(x) = NNum(Succ(x))



Universal Quantification

Form: V(variables)(sentence)

Allows us to make statements about all objects that have
certain properties.

Everyone at SFU is smart: Vx At(x, SFU) = Smart(x)

Every number has a successor:
Vx NNum(x) = NNum(Succ(x))

Roughly speaking, equivalent to the conjunction of
instantiations of P

(At(Joe, SFU) = Smart(Joe)) A
(At(Alice, SFU) = Smart(Alice)) A
(At(SFU, SFU) = Smart(SFU)) A...

Aside: Formulas are finite in length, so universal quantification
in general can't be expressed as a big conjunction.



A common mistake to avoid

e Typically, = is the main connective with ¥

e Common mistake: using A as the main connective with V:
Vx(At(x, SFU) A Smart(x))

means
“Everyone is at SFU and everyone is smart”

and not
"Everyone at SFU is smart”.



Existential Quantification
Form: J(variables)(sentence)

e Allows us to make a statement about an object without
naming it.
e Someone at UVic is smart: Ix(At(x, UVic) A Smart(x))



Existential Quantification
Form: J(variables)(sentence)

e Allows us to make a statement about an object without
naming it.

e Someone at UVic is smart: Ix(At(x, UVic) A Smart(x))

e There is a SFU student with a top GPA:



Existential Quantification
Form: J(variables)(sentence)
e Allows us to make a statement about an object without
naming it.
e Someone at UVic is smart: Ix(At(x, UVic) A Smart(x))

e There is a SFU student with a top GPA:
Ix(Student(x) AVy(Student(y) = GE(GPA(x), GPA(y))))



Existential Quantification
Form: J(variables)(sentence)
e Allows us to make a statement about an object without
naming it.
e Someone at UVic is smart: Ix(At(x, UVic) A Smart(x))
There is a SFU student with a top GPA:
Ix(Student(x) AVy(Student(y) = GE(GPA(x), GPA(y))))

Roughly speaking, equivalent to the disjunction of
instantiations of P

(At(Joe, UVic) A Smart(Joe)) Y
(At(Alice, UVic) A Smart(Alice)) Vv
(At(SFU, UVic) A Smart(SFU)) V...

But again, we cannot have an infinite disjuntion!



Another common mistake to avoid

e Typically, A is the main connective with 3

e Common mistake: Using = as the main connective with 3:
Ix(At(x, UVic) = Smart(x))

is true if (among other possibilities) there is someone who is
not at UVic!

e On the other hand:
Ix(At(x, UVic) A Smart(x))

is true if there is someone who is at UVic and is smart.



Properties of Quantifiers

e VxVy is the same as VyVx (why?)



Properties of Quantifiers

e VxVy is the same as VyVx (why?)
e Jx3y is the same as Jy3x (why?)



Properties of Quantifiers

e VxVy is the same as VyVx (why?)
e Jx3y is the same as Jy3x (why?)
e dxVy is not the same as Vydx:



Properties of Quantifiers

e VxVy is the same as VyVx (why?)
e Jx3y is the same as Jy3x (why?)

e dxVy is not the same as Vydx:

e IxVy Loves(x,y)
“There is a person who loves everyone”
e Vy3dx Loves(x,y)
“Everyone is loved by at least one person”



Properties of Quantifiers

VxVy is the same as VyVx (why?)
dx3Jy is the same as Jy3Ix (why?)

dxVy is not the same as Vydx:

e IxVy Loves(x,y)
“There is a person who loves everyone”
e Vy3dx Loves(x,y)
“Everyone is loved by at least one person”

Quantifier duality: each can be expressed using the other

Vx Likes(x, lceCream) = —3x —Likes(x, IceCream)
Ix Likes(x, Broccoli) = —Vx —Likes(x, Broccoli)

1 Like De Morgan's Rule



Expressing Sentences in FOL

e Brothers are siblings



Expressing Sentences in FOL

e Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).



Expressing Sentences in FOL

e Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).

e “Sibling” is symmetric



Expressing Sentences in FOL

e Brothers are siblings

Vx,y (Brother(x, y) = Sibling(x,y)).
e “Sibling” is symmetric

Vx,y (Sibling(x,y) = Sibling(y, x)).



Expressing Sentences in FOL

e Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).

e “Sibling” is symmetric
Vx,y (Sibling(x,y) = Sibling(y, x)).
e One's mother is one’s female parent



Expressing Sentences in FOL

e Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).
e “Sibling” is symmetric
Vx,y (Sibling(x,y) = Sibling(y, x)).
e One's mother is one's female parent
Vx,y (Mother(x,y) = (Female(x) A Parent(x, y))).



Expressing Sentences in FOL

Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).

“Sibling” is symmetric
Vx,y (Sibling(x,y) = Sibling(y, x)).
One’s mother is one's female parent
Vx,y (Mother(x,y) = (Female(x) A Parent(x,y))).

A first cousin is a child of a parent’s sibling



Expressing Sentences in FOL

Brothers are siblings
Vx,y (Brother(x, y) = Sibling(x,y)).
“Sibling” is symmetric
Vx,y (Sibling(x,y) = Sibling(y, x)).
One’s mother is one's female parent
Vx,y (Mother(x,y) = (Female(x) A Parent(x, y))).

A first cousin is a child of a parent’s sibling
Vx,y (FirstCousin(x,y) =
3p, ps(Parent(p, x) A Sibling(ps, p) A Parent(ps, y)))



Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes
ambiguity.

e Compare: “sibling is symmetric” and “a brother is a sibling”.



Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes
ambiguity.
e Compare: “sibling is symmetric” and “a brother is a sibling”.
Vx, y(Sibling(x,y) = Sibling(y, x)).
Vx, y(Brother(x, y) = Sibling(x,y)).



Expressing Sentences in FOL
Natural language is highly ambiguous, and FOL removes
ambiguity.
e Compare: “sibling is symmetric” and “a brother is a sibling”.
Vx, y(Sibling(x,y) = Sibling(y, x)).
Vx, y(Brother(x, y) = Sibling(x,y)).

e Compare: “a dog is a mammal” and "Anne is a student”.



Expressing Sentences in FOL

Natural language is highly ambiguous, and FOL removes
ambiguity.
e Compare: “sibling is symmetric” and “a brother is a sibling”.
Vx, y(Sibling(x,y) = Sibling(y, x)).
Vx, y(Brother(x, y) = Sibling(x,y)).

e Compare: “a dog is a mammal” and "Anne is a student”.
Vx(Dog(x) = Mammal(x)).
Student(Anne).



Equality

e t; = tpis true iff t; and t, refer to the same object



Equality

e t; = tpis true iff t; and t, refer to the same object
e E.g., definition of Sibling in terms of Parent:
Vx,y Sibling(x,y) = [~(x=y) A
Im, f (=(m=1f) A
Parent(m, x) A Parent(f,x) A
Parent(m,y) A Parent(f,y))]



Equality

e t; = tpis true iff t; and t, refer to the same object
e E.g., definition of Sibling in terms of Parent:
Vx,y Sibling(x,y) = [~(x=y) A
Im, f (=(m=1f) A
Parent(m, x) A Parent(f,x) A
Parent(m,y) A Parent(f,y))]

e Aside: Better is:
Vx,y Sibling(x,y) = [~(x = y) A 3Im, f (Mother(m, x)A\
Father(f,x) A Mother(m, y) A Father(f,y))]
+ definitions of Mother and Father.

1w As with programming, it is important how you express a
domain.



Equality

Don’t confuse = and =.



Equality
Don't confuse = and =.

e o = [ says that « and 3 share the same truth value

e = is a relation between formulas
e Eg.anb = bAa.



Equality
Don't confuse = and =.

e o = [ says that « and 3 share the same truth value
e = is a relation between formulas
e Eg. aAb = bAa
e t; = tp says that t; and t refer to the same individual

e — is a relation between terms
e E.g. CapitalOf (BC) = Victoria.



Interacting with FOL KBs

e An agent needs to interact with its KB.

e Regarding a KB as an ADT, there are two primary operations,
TELL and ASK.



Interacting with FOL KBs

e An agent needs to interact with its KB.

e Regarding a KB as an ADT, there are two primary operations,
TELL and ASK.

e We want to TELL things to the KB, e.g.

TELL(KB,Vx(Grad(x) = Student(x)))
TELL(KB, Grad(Alice))

e These sentences are assertions



Interacting with FOL KBs

e An agent needs to interact with its KB.

e Regarding a KB as an ADT, there are two primary operations,
TELL and ASK.
e We want to TELL things to the KB, e.g.
TELL(KB,Vx(Grad(x) = Student(x)))
TELL(KB, Grad(Alice))

e These sentences are assertions

e We also want to ASK things of a KB,
ASK (KB, 3x Student(x))

e These are queries or goals

e The KB should output x where Student(x) is true:
{x/Alice, ...}



Interacting with FOL KBs: The Wumpus
World

e Suppose a wumpus-world agent is using a FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:



Interacting with FOL KBs: The Wumpus
World

e Suppose a wumpus-world agent is using a FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:

e Express by the percept sentence:
Tell(KB, Percept([Smell, Breeze, None, None, None],5))



Interacting with FOL KBs: The Wumpus
World

e Suppose a wumpus-world agent is using a FOL KB and
perceives a smell and a breeze (but no glitter) at t = 5:
e Express by the percept sentence:
Tell(KB, Percept([Smell, Breeze, None, None, None],5))
e Then:
Ask(KB,JaAction(a,5))

e l.e., does KB entail any particular actions at t = 57
o Ask solves this and returns {a/Shoot}



Knowledge in the Wumpus World

e Need to specify axioms about the wumpus world; for example:

o “Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).



Knowledge in the Wumpus World

e Need to specify axioms about the wumpus world; for example:

o “Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).
o Reflex: Vt AtGold(t) = Action(Grab, t)



Knowledge in the Wumpus World

Need to specify axioms about the wumpus world; for example:

“Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).
Reflex: V't AtGold(t) = Action(Grab, t)

Reflex with internal state: Do we have the gold already?
Vt AtGold(t) A —Holding(Gold, t) = Action(Grab, t)



Knowledge in the Wumpus World

Need to specify axioms about the wumpus world; for example:

“Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).
Reflex: V't AtGold(t) = Action(Grab, t)

Reflex with internal state: Do we have the gold already?
Vt AtGold(t) A —Holding(Gold, t) = Action(Grab, t)
Note that Holding(Gold, t) cannot be observed
= must keep track of change



Knowledge in the Wumpus World

Need to specify axioms about the wumpus world; for example:

“Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).
Reflex: V't AtGold(t) = Action(Grab, t)

Reflex with internal state: Do we have the gold already?
Vt AtGold(t) A —Holding(Gold, t) = Action(Grab, t)
Note that Holding(Gold, t) cannot be observed
= must keep track of change

Q: If we know Holding(Gold, t) can we conclude
Holding(Gold, t +1)?



Knowledge in the Wumpus World

Need to specify axioms about the wumpus world; for example:

“Perception”
Vb, g, t, m, c Percept([Smell, b, g, m,c],t) = Smelt(t)
Vs, b, t, m, ¢ Percept([s, b, Glitter, m, c|, t) = AtGold(t)

1= Aside: Must keep track of time, and so Smelt(t).

Reflex: V't AtGold(t) = Action(Grab, t)
Reflex with internal state: Do we have the gold already?
Vt AtGold(t) A —Holding(Gold, t) = Action(Grab, t)
Note that Holding(Gold, t) cannot be observed
= must keep track of change

Q: If we know Holding(Gold, t) can we conclude
Holding(Gold, t +1)?
e Ans: No



Representing Information

e Need to remember properties of locations:
Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)
Vx, t At(Agent,x,t) A Breeze(t) = Breezy(x)
e Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:



Representing Information

e Need to remember properties of locations:
Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)
Vx, t At(Agent,x,t) A Breeze(t) = Breezy(x)
e Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:

e Diagnostic rule — infer cause from effect

Yy Breezy(y) = 3xPit(x) A Adjacent(x,y)
o Causal rule — infer effect from cause

Vx,y Pit(x) A Adjacent(x,y) = Breezy(y)



Representing Information

Need to remember properties of locations:

Vx, t At(Agent,x, t) A Smelt(t) = Smelly(x)

Vx, t At(Agent,x,t) A\ Breeze(t) = Breezy(x)
Need to be careful that all information is represented.
Consider “Squares are breezy near a pit”:

e Diagnostic rule — infer cause from effect

Yy Breezy(y) = 3xPit(x) A Adjacent(x,y)

e Causal rule — infer effect from cause

Vx,y Pit(x) A Adjacent(x,y) = Breezy(y)

Neither of these is complete — e.g., the causal rule doesn't say
whether squares far away from pits can be breezy

Definition for the Breezy predicate:
Yy Breezy(y) = [3x Pit(x) A Adjacent(x, y)]



Knowledge Engineering in FOL

@ Identify the task

® Assemble the relevant knowledge

© Decide on a vocabulary of predicates, functions, and constants
O Encode general knowledge about the domain

® Encode a description of the specific problem instance

® Pose queries to the inference procedure and get answers

@ Debug the knowledge base.



Knowledge Engineering in FOL

@ Identify the task

® Assemble the relevant knowledge

© Decide on a vocabulary of predicates, functions, and constants
O Encode general knowledge about the domain

® Encode a description of the specific problem instance

® Pose queries to the inference procedure and get answers

@ Debug the knowledge base.

Aside: This is pretty much the same as designing a database
schema + instance.



The Electronic Circuits Domain

Full Adder

=> I

. ‘\
—[ o2




The Electronic Circuits Domain

1. Identify the task



The Electronic Circuits Domain

1. Identify the task

e Does the circuit actually add properly? (circuit verification)



The Electronic Circuits Domain

1. Identify the task

e Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge



The Electronic Circuits Domain

1. Identify the task
e Does the circuit actually add properly? (circuit verification)
2. Assemble the relevant knowledge

e Composed of wires and gates; Types of gates (AND, OR,
XOR, NOT)
o Irrelevant: size, shape, color, cost of gates



The Electronic Circuits Domain

1. Identify the task
e Does the circuit actually add properly? (circuit verification)
2. Assemble the relevant knowledge

e Composed of wires and gates; Types of gates (AND, OR,
XOR, NOT)
o Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary



The Electronic Circuits Domain

1. Identify the task

e Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

e Composed of wires and gates; Types of gates (AND, OR,
XOR, NOT)
o Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
e Different possibilities:
e Function: Type(Xi1) = XOR
e Binary predicate: Type(X1, XOR)
e Unary predicate: XOR(X1)



The Electronic Circuits Domain

4. Encode general knowledge of the domain:



The Electronic Circuits Domain
4. Encode general knowledge of the domain:

e Vp1, p2 Connected(pi, p2) = Signal(p1) = Signal(p2)



The Electronic Circuits Domain
4. Encode general knowledge of the domain:

e Vp1, p2 Connected(pi, p2) = Signal(p1) = Signal(p2)
e Vp Signal(p) = 1V Signal(p) =0



The Electronic Circuits Domain

4. Encode general knowledge of the domain:

e Vp1, p2 Connected(pi, p2) = Signal(p1) = Signal(p2)
e Vp Signal(p) = 1V Signal(p) =0
e 1#£0



The Electronic Circuits Domain
4. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =0

140

Vp1, p2 Connected(p1, p2) = Connected(p2, p1)



The Electronic Circuits Domain
4. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =0
140
Vp1, p2 Connected(p1, p2) = Connected(p2, p1)
Vg Type(g) = OR =
Signal(Out(1,g)) =1 = 3n Signal(In(n,g)) =1



The Electronic Circuits Domain
4. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =
140
Vp1, p2 Connected(p1, p2) = Connected(p2, p1)
Vg Type(g) = OR =
Signal(Out(1,g)) =1 = 3n Signal(In(n,g)) =1
Vg Type(g) = AND =
Signal(Out(1,g)) =0 = 3n Signal(In(n,g)) =0



The Electronic Circuits Domain
. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =
140
Vp1, p2 Connected(p1, p2) = Connected(p2, p1)
Vg Type(g) = OR =
Signal(Out(1,g)) =1 = 3n Signal(In(n,g)) =1

Vg Type(g) = AND =
Signal(Out(1,g)) =0 = 3n Signal(In(n,g)) =0
Vg Type(g) = XOR j
Signal(Out(1,g)) =1 = Signal(In(1, g)) # Signal(In(2, g))



The Electronic Circuits Domain
. Encode general knowledge of the domain:

Vp1, p2 Connected(p1, p2) = Signal(p1) = Signal(pz)
Vp Signal(p) = 1V Signal(p) =0

140

Vp1, p2 Connected(p1, p2) = Connected(p2, p1)

Vg Type(g) = OR =

Signal(Out(1,g)) =1 = 3n Signal(In(n,g)) =1
Vg Type(g) = AND =
Signal(Out(1,g)) =0 = 3n Signal(In(n,g)) =0
Vg Type(g) = XOR =
Signal(Out(1,g)) =1 = Signal(In(1, g)) # Signal(In(2, g))

= NOT = Signal(Out(1, g)) # Signal(In(1, g))

~—

Vg Type(g



The Electronic Circuits Domain

5. Encode the specific problem instance:

Type(X1) = XOR Type(X2) = XOR

Type(A1) = AND Type(A2) = AND

Type(01) = OR

Connected(Out(1,X1), In(1,X2))  Connected(In(1,Cy1), In(1,X1))
Connected(Out(1,X1), In(2,A2))  Connected(In(1,Cy1), In(1,A1))
Connected(Out(1,A2), In(1,01))  Connected(In(2,Cy), In(2,X1))
Connected(Out(1,A1), In(2,01))  Connected(In(2,C1), In(2,A1))
Connected(Out(1,X2), Out(1,C1)) Connected(In(3,Cy), In(2,X2))
Connected(Out(1,0;), Out(2,Cy)) Connected(In(3,C1), In(1,A7))



The Electronic Circuits Domain

6. Pose queries to the inference procedure

e E.g. what are the outputs, given a set of input signals?
o le.
3017 (o))
(Signal(In(1, G;)) = 1 A Signal(In(2, G1)) =0 A
Signal(In(3, G1)) = 1)
=
(Signal(Out(1, C;)) = o1 A Signal(Out(2, (1)) = 07)



The Electronic Circuits Domain

6. Pose queries to the inference procedure

e E.g. what are the outputs, given a set of input signals?
o le.
3017 (o))
(Signal(In(1, G;)) = 1 A Signal(In(2, G1)) =0 A
Signal(In(3, G1)) = 1)
=
(Signal(Out(1, C;)) = o1 A Signal(Out(2, (1)) = 07)

7. Debug the knowledge base

e E.g. may have omitted assertions like 0 # 1.



Summary

e First-order logic:

e Much more expressive than propositional logic

e objects and relations are semantic primitives

e syntax: constants, functions, predicates, equality, quantifiers
e FOL is harder to reason with

e Undecidable in general



