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Outline

Topics:

• Knowledge-based agents

• Example domain: The Wumpus World

• Logic in general
• models and entailment

• Propositional (Boolean) logic

• Equivalence, validity, satisfiability

• Inference rules and theorem proving
• forward chaining
• backward chaining
• resolution



Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system).
• Declarative: Sentences express assertions about the domain

• Knowledge base operations:
• Tell it what it needs to know
• Ask (itself?) what to do – query

+ Answers should follow from the contents of the KB



Knowledge bases

Agents can be viewed:

• at the knowledge level

• i.e., what they know, regardless of how implemented

• at the implementation level (also called the symbol level)

• i.e., data structures and algorithms that manipulate them

+ Compare: abstract data type vs. data structure used to
implement an ADT.



A simple knowledge-based agent

Function KB-Agent(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action ←Ask(KB, Make-Action-Query(t))
Tell(KB, Make-Action-Sentence(action, t))
t ←t + 1
return action



A simple knowledge-based agent

In the most general case, the agent must be able to:

• Represent states, actions, etc.

• Incorporate new percepts

• Update internal representations of the world

• Deduce hidden/implicit properties of the world

• Deduce appropriate actions



The Wumpus World
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Wumpus World PEAS description

Performance measure: gold: +1000; death: -1000; -1 per step;
-10 for using the arrow

Environment:

• Squares adjacent to wumpus are smelly

• Squares adjacent to pit are breezy

• Glitter iff gold is in the same square

• Shooting kills wumpus if you are facing it

• Shooting uses up the only arrow

• Grabbing picks up gold if in same square

• Releasing drops the gold in same square

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
Sensors: Breeze, Glitter, Smell, Bump, Scream



Wumpus world characterisation

Observable: ??
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Wumpus world characterisation

Observable: No – only local perception

Deterministic: Yes – outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: Yes – Wumpus and pits do not move

Discrete: Yes

Single-agent: Yes – Wumpus is essentially a natural feature



Exploring a wumpus world
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Exploring a wumpus world
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Exploring a wumpus world
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Tight spots
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• Breeze in (1,2) and (2,1)
⇒ no safe actions

• If pits are uniformly distributed, (2,2) is more likely to have a
pit than (1,3) + (3,1)
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• Smell in (1,1)
⇒ cannot safely move

• Can use a strategy of coercion:
• shoot straight ahead
• wumpus was there ⇒ dead ⇒ safe
• wumpus wasn’t there ⇒ safe
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Logic in the Wumpus World

• As the agent moves and carries out sensing actions, it
performs logical reasoning.

• E.g.: “If (1,3) or (2,2) contains a pit and
(2,2) doesn’t contain a pit

then (1,3) must contain a pit”.

• We’ll use logic to represent information about the wumpus
world, and to reason about this world.



Logic in general

• A logic is a formal language for representing information such
that conclusions can be drawn

• The syntax defines the sentences in the language

• The semantics define the “meaning” of sentences;
• i.e., define truth of a sentence in a world

• E.g., in the language of arithmetic

• x + 2 ≥ y is a sentence; x2 + y > is not a sentence
• x + 2 ≥ y is true iff the number x + 2 is not less than y
• x + 2 ≥ y is true in a world where x = 7, y = 1
• x + 2 ≥ y is false in a world where x = 0, y = 6



Semantics: Entailment

• Entailment means that one thing follows from another:
KB |= α

• Knowledge base KB entails sentence α if and only if:

• α is true in all worlds where KB is true
• Or: if KB is true then α must be true.

• E.g., the KB containing “the Canucks won” entails “either the
Canucks won or the Leafs won”

• E.g., x + y = 4 entails 4 = x + y

• Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

• Note: Brains (arguably) process syntax (of some sort).



Semantics: Models

• Logicians typically think in terms of models, which are
complete descriptions of a world, with respect to which truth
can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Thus KB |= α if and only if M(KB) ⊆ M(α)

• E.g. KB = Canucks won and Leafs won
α = Canucks won
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Aside: Semantics

• Logic texts usually distinguish:

• an interpretation, which is some possible world or complete
state of affairs, from

• a model, which is an interpretation that makes a specific
sentence or set of sentences true.

• The text uses model in both senses (so don’t be confused if
you’ve seen the terms interpretation/model from earlier
courses).

• And if you haven’t, ignore this slide!

• We’ll use the text’s terminology.



Entailment in the Wumpus World

Consider the situation where the agent detects nothing in [1,1],
moves right, detects a breeze in [2,1]

• Consider possible models for just the ?’s, assuming only pits
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B
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?

?

• With no information:
3 Boolean choices ⇒ 8 possible models



Wumpus Models

Consider possible arrangements of pits in [1,2], [2,2], and [3,1],
along with observations:
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Wumpus Models

Models of the KB:
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• KB = wumpus-world rules + observations



Wumpus Models

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT PIT

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT

1 2 3

1

2

Breeze

PIT

PIT

1 2 3

1

2

Breeze

PIT PIT

1 2 3

1

2

Breeze

KB
1

• KB = wumpus-world rules + observations

• α1 = “[1,2] is safe”, KB |= α1, proved by model checking



Wumpus Models: Another Example
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• KB = wumpus-world rules + observations

• α2 = “[2,2] is safe”, KB 6|= α2



Inference

In the case of propositional logic, we can use entailment to derive
conclusions by enumerating models.

• This is the usual method of computing truth tables

• I.e. can use entailment to do inference.

• In first order logic we generally can’t enumerate all models
(since there may be infinitely many of them and they may
have an infinite domain).

• An inference procedure is a (syntactic) procedure for deriving
some formulas from others.



Inference

• Inference is a procedure for computing entailments.

• KB ` α = sentence α can be derived from KB by the
inference procedure

• Entailment says what things are implicitly true in a KB.

• Inference is intended to compute things that are implicitly true.

Desiderata:

• Soundness: An inference procedure is sound if
whenever KB ` α, it is also true that KB |= α.

• Completeness: An inference procedure is complete if
whenever KB |= α, it is also true that KB ` α.
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Propositional Logic: Syntax

• Propositional logic is a simple logic – illustrates basic ideas

• We first specify the proposition symbols or (atomic)
sentences: P1, P2 etc.

• Then we define the language:
If S1 and S2 are sentences then:

• ¬S1 is a sentence (negation)
• S1 ∧ S2 is a sentence (conjunction)
• S1 ∨ S2 is a sentence (disjunction)
• S1 ⇒ S2 is a sentence (implication)
• S1 ≡ S2 is a sentence (biconditional)



Propositional Logic: Semantics

• Each model assigns true or false to each proposition symbol

• E.g.: P1,2 ← true, P2,2 ← true, P3,1 ← false
(With these symbols, 8 possible models, can be enumerated.)

• Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true
S1 ≡ S2 is true iff S1 ⇒ S2 is true and

S2 ⇒ S1 is true

• Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true



Truth Tables for Connectives

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true



Wumpus World Sentences

• Let Pi ,j be true if there is a pit in [i , j ].

• Let Bi ,j be true if there is a breeze in [i , j ].

• Information from sensors: ¬P1,1, ¬B1,1, B2,1

• Also know: “pits cause breezes in adjacent squares”
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(I.e. “A breeze implies a pit in an adjacent square”)

you could not derive ¬P1,2 and ¬P2.1 from ¬B1,1.

+ Crucial to express all information
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Wumpus World KB

For the part of the Wumpus world we’re looking at, let

KB = {R1,R2,R3,R4,R5}

where

R1 is ¬P1,1

R2 is B1,1 ≡ (P1,2 ∨ P2,1)

R3 is B2,1 ≡ (P1,1 ∨ P2,2 ∨ P3,1)

R4 is ¬B1,1

R5 is B2,1



Truth Tables for Inference
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• Enumerate rows (different assignments to symbols),

• For KB |= α, if KB is true in row, check that α is too



Inference by Enumeration

Function TT-Entails?(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α the query, a sentence in propositional logic
symbols ←a list of the proposition symbols in KB and α
return TT-Check-All(KB, α, symbols, [ ])



Inference by Enumeration

Function TT-Check-All(KB, α, symbols, model) returns true or false
if Empty?(symbols) then

if PL-True?(KB, model) then return PL-True?(α, model)
else return true

else do
P ←First(symbols); rest ←Rest(symbols)
return TT-Check-All(KB, α, rest, Extend(P, true,model)) and

TT-Check-All(KB, α, rest, Extend(P, false,model))

• Depth-first enumeration of all models
• Hence, sound and complete

• Algorithm is O(2n) for n symbols; problem is co-NP-complete



Logical Equivalence

• Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

• The following should be familiar:

(α ∧ β) ≡ (β ∧ α)
(α ∨ β) ≡ (β ∨ α)

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ))
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ))

¬(¬α) ≡ α
(α⇒ β) ≡ (¬β ⇒ ¬α)
(α⇒ β) ≡ (¬α ∨ β)
(α ≡ β) ≡ ((α⇒ β) ∧ (β ⇒ α))
¬(α ∧ β) ≡ (¬α ∨ ¬β)
¬(α ∨ β) ≡ (¬α ∧ ¬β)

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ))
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ))



Validity and Satisfiability

• A sentence is valid if it is true in all models,
e.g., A ∨ ¬A, A⇒ A, (A ∧ (A⇒ B))⇒ B

• Validity is connected to inference via the Deduction Theorem:
KB |= α if and only if (KB ⇒ α) is valid

• A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

• A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

• Satisfiability is connected to inference via the following:
KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

• I.e., prove α by reductio ad absurdum

• What often proves better for determining KB |= α is to show
that KB ∧ ¬α is unsatisfiable.
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Proof Methods

Proof methods divide into (roughly) two kinds:
1. Application of inference rules:

• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications.

• Can use inference rules as operators in a standard search
algorithm.

• Typically require translation of sentences into a normal form

2. Model checking:
Possibilities:

• Truth table enumeration (always exponential in n)

• Improved backtracking, e.g., DPLL

• Heuristic search in model space (sound but incomplete)
e.g., min-conflicts hill-climbing algorithms



Specialised Inference: Forward and
Backward Chaining

• We consider a very useful, restricted case: Horn Form

• KB = conjunction of Horn clauses

• Horn clause =
• proposition symbol; or
• (conjunction of symbols) ⇒ symbol

• E.g., C , (B ⇒ A), (C ∧ D ⇒ B)
Not: (¬B ⇒ A), (B ∨ A)



Horn clauses

Technically a Horn clause is a clause or disjunction of literals, with
at most one positive literal.

• I.e. of form A0 ∨ ¬A1 ∨ · · · ∨ ¬An or
¬A1 ∨ · · · ∨ ¬An

• These can be written: A1 ∧ · · · ∧ An ⇒ A0 or
A1 ∧ · · · ∧ An ⇒ ⊥

• We won’t bother with rules of the form A1 ∧ · · · ∧ An ⇒ ⊥
• Rules of this form are called integrity constraints.
• They don’t allow new facts to be derived, but rather rule out

certain combinations of facts.



Reasoning with Horn clauses

• Modus Ponens (for Horn form): Complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β
• Can be used with forward chaining or backward chaining.

• These algorithms are very natural; forward chaining runs in
linear time



Example

KB:

P ⇒ Q,
L ∧M ⇒ P,
B ∧ L⇒ M,
A ∧ P ⇒ L,
A ∧ B ⇒ L,
A,
B



Forward chaining

Idea:

• Fire any rule whose premises are satisfied in the KB,

• Add its conclusion to the KB, until query is found



Forward chaining algorithm

Procedure:

C := {};
repeat

choose r ∈ A such that

r is ‘b1 ∧ · · · ∧ bm ⇒ h’
bi ∈ C for all i , and
h 6∈ C ;

C := C ∪ {h}

until no more choices



Forward chaining algorithm (from text)

Function PL-FC-Entails?(KB,q) returns true or false
inputs: KB the knowledge base, a set of propositional Horn clauses

q the query, a proposition symbol
local variables: count a table, indexed by clause, initially # of premises

inferred a table, indexed by symbol, each entry initially false
agenda a list of symbols, initially symbols known true in KB

while agenda is not empty do
p ←Pop(agenda)
unless inferred[p] do

inferred[p] ←true
for each Horn clause c in whose premise p appears do

decrement count[c]
if count[c] = 0 then do

if Head[c] = q then return true; Push(Head[c], agenda)
return false



Forward chaining example

KB:

P ⇒ Q,
L ∧M ⇒ P,
B ∧ L⇒ M,
A ∧ P ⇒ L,
A ∧ B ⇒ L,
A,
B

Query Q:

• From A and B, conclude L

• From L and B, conclude M

• From L and M, conclude P

• From P conclude Q
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Completeness

FC, when run to completion, derives every atomic sentence
entailed by KB

1. FC reaches a fixed point where no new atomic sentences are
derived

2. Can consider the final state as a model m, assigning true/false
to symbols

3. Claim: Every clause in the original KB is true in m
Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m

Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m



Backward chaining

• We won’t develop an algorithm for backward chaining here,
but will just consider it informally.

• Idea with backward chaining:
Start from query q and work backwards.

• To prove q by BC:
• check if q is known already;
• otherwise prove (by BC) all premises of some rule concluding q

• Avoid loops: Check if new subgoal is already on the goal stack

• Avoid repeated work: Check if new subgoal

1 has already been proved true, or
2 has already failed



Backward chaining example

KB:

P ⇒ Q, L ∧M ⇒ P, B ∧ L⇒ M, A ∧ P ⇒ L,
A ∧ B ⇒ L, A, B

Query Q:

• Establish P as a subgoal.

• Can prove P by proving L and M

• For M:
• Can prove M if we can prove B and L
• B is known to be true
• L can be proven by proving A and B.
• A and B are known to be true

• For L:
• L can be proven by proving A and B.
• A and B are known to be true

• L and M are true, thus P is true, thus Q is true
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Forward vs. backward chaining

• FC is data-driven, cf. automatic, unconscious processing,

• E.g., object recognition, routine decisions
• May do lots of work that is irrelevant to the goal
• Good for reactive agents

• BC is goal-driven, appropriate for problem-solving,

• E.g., Where are my keys? How do I get a job?
• Complexity of BC can be much less than linear in size of KB
• Can also sometimes be exponential in size of KB
• Good for question-answering and explanation
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General Propositional Inference:
Resolution

Resolution is a rule of inference defined for Conjunctive Normal
Form (CNF)

• CNF: conjunction of disjunctions of literals

• A clause is a disjunctions of literals.

• E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D).
+ Write as: (A ∨ ¬B), (B ∨ ¬C ∨ ¬D)



Resolution

• Resolution inference rule:

`1 ∨ · · · ∨ `k , m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. (I.e. `i ≡ ¬mj .)

• E.g.,
P1,3 ∨ P2,2, ¬P2,2

P1,3

• Resolution is sound and complete for propositional logic



Using resolution to compute entailments

To show whether KB |= α, show instead that KB ∧ ¬α is
unsatisfiable:

1 Convert KB ∧ ¬α into conjunctive normal form.

2 Use resolution to determine whether KB ∧ ¬α is unsatisfiable.

3 If so then KB |= α; otherwise KB 6|= α.



Conversion to CNF

E.g.: B1,1 ≡ (P1,2 ∨ P2,1)

1 Eliminate ≡, replacing α ≡ β with (α⇒ β) ∧ (β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2 Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3 Move ¬ inwards using de Morgan’s rules and double-negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4 Apply distributivity law (∨ over ∧) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

For resolution, then write as
(¬B1,1 ∨ P1,2 ∨ P2,1), (¬P1,2 ∨ B1,1), (¬P2,1 ∨ B1,1)
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Resolution Algorithm

Function PL-Resolution(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses ←the set of clauses in CNF(KB ∧ ¬α)
new ←{}
loop do

if clauses contains the empty clause then return true
if Ci , Cj are resolvable clauses where

PL-Resolve(Ci , Cj) 6∈ clauses
then clauses ←clauses ∪ PL-Resolve(Ci , Cj)
else return false

+ Note that the algorithm in the text is buggy



Resolution Example

• E.g.: KB = (B1,1 ≡ (P1,2 ∨ P2,1)) ∧ ¬B1,1,
α = ¬P1,2

• Show KB |= α by showing that KB ∧ ¬α is unsatisfiable:

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1

P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2



Resolution: Another Example

Show:

{r ⇒ u, u ⇒ ¬w ,¬r ⇒ ¬w} |= ¬w



Resolution: Continued

There is a great deal that can be done to improve the basic
algorithm:

• Unit resolution: propagate unit clauses (e.g. ¬B1,1) as much
as possible.

• Note that this correspoinds to the minimum remaining values
heuristic in constraint satisfaction!

• Eliminate tautologies

• Eliminate redundant clauses

• Eliminate clauses with literal ` where the complement of `
doesn’t appear elsewhere.

• Set of support: Do resolutions on clauses with ancestor in ¬α.

• Similar to backward chaining – keep a focus on the goal.



Summary

• Logical agents apply inference to a knowledge base to derive
new information and make decisions

• Basic concepts of logic:
• syntax: formal structure of sentences
• semantics: truth of sentences wrt models
• entailment: necessary truth of one sentence given another
• inference: deriving sentences from other sentences
• soundness: derivations produce only entailed sentences
• completeness: derivations can produce all entailed sentences



Summary (Continued)

• Wumpus world requires the ability to represent partial and
negated information, reason by cases, etc.

• Forward, backward chaining are complete for Horn clauses.

• Forward chaining is linear-time for Horn clauses.

• Resolution is complete for propositional logic.

• Propositional logic lacks expressive power


