Logical Agents: Propositional Logic Chapter 7

Outline

Topics:

- Knowledge-based agents
- Example domain: The Wumpus World
- Logic in general
 - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge bases

- *Knowledge base* = set of *sentences* in a *formal* language
- Declarative approach to building an agent (or other system).
 - Declarative: Sentences express assertions about the domain
- Knowledge base operations:
 - *Tell* it what it needs to know
 - Ask (itself?) what to do query

Knowledge bases

Agents can be viewed:

- at the knowledge level
 - i.e., what they know, regardless of how implemented
- at the *implementation level* (also called the *symbol level*)
 - i.e., data structures and algorithms that manipulate them

Compare: abstract data type vs. data structure used to implement an ADT.

A simple knowledge-based agent

Function KB-Agent(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time

 $\begin{array}{l} \textit{Tell}(\mathsf{KB}, \, \mathsf{Make-Percept-Sentence}(\mathsf{percept}, \, t)) \\ \texttt{action} \leftarrow \textit{Ask}(\mathsf{KB}, \, \mathsf{Make-Action-Query}(t)) \\ \textit{Tell}(\mathsf{KB}, \, \mathsf{Make-Action-Sentence}(\mathsf{action}, \, t)) \\ \texttt{t} \leftarrow \texttt{t} + 1 \\ \texttt{return} \, \texttt{action} \end{array}$

A simple knowledge-based agent

In the most general case, the agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden/implicit properties of the world
- Deduce appropriate actions

The Wumpus World

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wumpus World PEAS description

Performance measure: gold: +1000; death: -1000; -1 per step; -10 for using the arrow Environment:

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot Sensors: Breeze, Glitter, Smell, Bump, Scream

Observable: ??

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Observable: No – only *local* perception Deterministic: ??

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Observable: No – only *local* perception Deterministic: Yes – outcomes exactly specified Episodic: ??

Observable: No – only *local* perception Deterministic: Yes – outcomes exactly specified Episodic: No – sequential at the level of actions Static: ??

Observable: No – only *local* perception Deterministic: Yes – outcomes exactly specified Episodic: No – sequential at the level of actions Static: Yes – Wumpus and pits do not move Discrete: ??

Observable: No – only *local* perception Deterministic: Yes – outcomes exactly specified Episodic: No – sequential at the level of actions Static: Yes – Wumpus and pits do not move Discrete: Yes Single-agent: ??

Observable: No – only *local* perception Deterministic: Yes – outcomes exactly specified Episodic: No – sequential at the level of actions Static: Yes – Wumpus and pits do not move Discrete: Yes Single-agent: Yes – Wumpus is essentially a natural feature

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Percept:

[Stench: Yes, Breeze: Yes, Glitter: Yes, Bump: No, Scream: No]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Breeze in (1,2) and (2,1) \Rightarrow no safe actions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Breeze in (1,2) and (2,1) \Rightarrow no safe actions
- If pits are uniformly distributed, (2,2) is more likely to have a pit than (1,3) + (3,1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Smell in (1,1) \Rightarrow cannot safely move

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Smell in (1,1)

 \Rightarrow cannot safely move

- Can use a strategy of *coercion*:
 - shoot straight ahead
 - wumpus was there \Rightarrow dead \Rightarrow safe
 - wumpus wasn't there \Rightarrow safe

Logic in the Wumpus World

- As the agent moves and carries out sensing actions, it performs *logical reasoning*.
 - E.g.: "If (1,3) or (2,2) contains a pit and (2,2) doesn't contain a pit then (1,3) must contain a pit".
- We'll use logic to represent information about the wumpus world, and to reason about this world.

Logic in general

- A *logic* is a formal language for representing information such that conclusions can be drawn
- The *syntax* defines the sentences in the language
- The *semantics* define the "meaning" of sentences;
 - i.e., define *truth* of a *sentence* in a *world*
- E.g., in the language of arithmetic
 - $x + 2 \ge y$ is a sentence; $x^2 + y > x^2$ is not a sentence
 - $x + 2 \ge y$ is true iff the number x + 2 is not less than y
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - $x + 2 \ge y$ is false in a world where x = 0, y = 6

Semantics: Entailment

- Entailment means that one thing follows from another: $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if:
 - α is true in all worlds where *KB* is true
 - Or: if *KB* is true then α must be true.
- E.g., the KB containing "the Canucks won" entails "either the Canucks won or the Leafs won"
- E.g., *x* + *y* = 4 entails 4 = *x* + *y*
- Entailment is a relationship between sentences (i.e., *syntax*) that is based on *semantics*
- Note: Brains (arguably) process *syntax* (of some sort).

Semantics: Models

- Logicians typically think in terms of *models*, which are complete descriptions of a world, with respect to which truth can be evaluated
- We say *m* is a model of a sentence α if α is true in *m*
- M(α) is the set of all models of α
- Thus $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$
- E.g. KB = Canucks won and Leafs won

 $\alpha = \mathsf{Canucks} \mathsf{ won}$

Aside: Semantics

- Logic texts usually distinguish:
 - an *interpretation*, which is some possible world or complete state of affairs, from
 - a *model*, which is an interpretation that makes a specific sentence or set of sentences true.
- The text uses *model* in both senses (so don't be confused if you've seen the terms interpretation/model from earlier courses).
 - And if you haven't, ignore this slide!
- We'll use the text's terminology.

Entailment in the Wumpus World

Consider the situation where the agent detects nothing in [1,1], moves right, detects a breeze in [2,1]

• Consider possible models for just the ?'s, assuming only pits

• With no information:

3 Boolean choices \Rightarrow 8 possible models

Wumpus Models

Consider possible arrangements of pits in [1,2], [2,2], and [3,1], along with observations:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ���

Wumpus Models

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Models of the KB:

• *KB* = wumpus-world rules + observations

Wumpus Models

(日)、

- *KB* = wumpus-world rules + observations
- $\alpha_1 = "[1,2]$ is safe", $KB \models \alpha_1$, proved by *model checking*
Wumpus Models: Another Example

• *KB* = wumpus-world rules + observations

Wumpus Models: Another Example

- *KB* = wumpus-world rules + observations
- $\alpha_2 =$ "[2,2] is safe", $KB \not\models \alpha_2$

Inference

In the case of propositional logic, we can use entailment to derive conclusions by enumerating models.

- This is the usual method of computing *truth tables*
- I.e. can use entailment to do *inference*.
- In first order logic we generally can't enumerate all models (since there may be infinitely many of them and they may have an infinite domain).
- An *inference procedure* is a (syntactic) procedure for deriving some formulas from others.

Inference

- Inference is a procedure for computing entailments.
- $KB \vdash \alpha$ = sentence α can be derived from KB by the inference procedure
- Entailment says what things are implicitly true in a KB.
 - Inference is intended to *compute* things that are implicitly true.

Inference

- Inference is a procedure for computing entailments.
- $KB \vdash \alpha$ = sentence α can be derived from KB by the inference procedure
- Entailment says what things are implicitly true in a KB.
 - Inference is intended to *compute* things that are implicitly true.

Desiderata:

- Soundness: An inference procedure is sound if whenever KB ⊢ α, it is also true that KB ⊨ α.
- Completeness: An inference procedure is complete if whenever KB ⊨ α, it is also true that KB ⊢ α.

Propositional Logic: Syntax

- Propositional logic is a simple logic illustrates basic ideas
- We first specify the *proposition symbols* or *(atomic) sentences*: *P*₁, *P*₂ etc.
- Then we define the language: If S₁ and S₂ are sentences then:
 - $\neg S_1$ is a sentence (*negation*)
 - $S_1 \wedge S_2$ is a sentence (*conjunction*)
 - $S_1 \vee S_2$ is a sentence (*disjunction*)
 - $S_1 \Rightarrow S_2$ is a sentence (*implication*)
 - $S_1 \equiv S_2$ is a sentence (*biconditional*)

Propositional Logic: Semantics

- Each model assigns true or false to each proposition symbol
- E.g.: P_{1,2} ← true, P_{2,2} ← true, P_{3,1} ← false (With these symbols, 8 possible models, can be enumerated.)
- Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true <i>and</i>	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true <i>or</i>	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false <i>or</i>	S_2	is true
$S_1 \equiv S_2$	is true iff	$S_1 \Rightarrow S_2$	is true <i>and</i>		
		$S_2 \Rightarrow S_1$	is true		

• Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$

Truth Tables for Connectives

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i,j].
- Let $B_{i,j}$ be true if there is a breeze in [i, j].
- Information from sensors: $\neg P_{1,1}, \neg B_{1,1}, B_{2,1}$
- Also know: "pits cause breezes in adjacent squares"

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i, j].
- Let $B_{i,j}$ be true if there is a breeze in [i, j].
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- "A square is breezy *if and only if* there is an adjacent pit" $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$ $B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - Note: B_{1,1} has no "internal structure" think of it as a string.
 - So must write 1 formula for each square.

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i, j].
- Let $B_{i,j}$ be true if there is a breeze in [i, j].
- Information from sensors: $\neg P_{1,1}, \ \neg B_{1,1}, \ B_{2,1}$
- "A square is breezy *if and only if* there is an adjacent pit" $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$ $B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - Note: B_{1,1} has no "internal structure" think of it as a string.
 - So must write 1 formula for each square.
- Using logic can conclude $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.
- Note, if you wrote the above as:

 $B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})$

(I.e. "A breeze implies a pit in an adjacent square") you could not derive $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.

Crucial to express all information

Wumpus World KB

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For the part of the Wumpus world we're looking at, let

 $KB = \{R_1, R_2, R_3, R_4, R_5\}$

where

$$\begin{array}{lll} R_{1} & \text{is} & \neg P_{1,1} \\ R_{2} & \text{is} & B_{1,1} \equiv (P_{1,2} \lor P_{2,1}) \\ R_{3} & \text{is} & B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \\ R_{4} & \text{is} & \neg B_{1,1} \\ R_{5} & \text{is} & B_{2,1} \end{array}$$

Truth Tables for Inference

B _{1,1}	<i>B</i> _{2,1}	<i>P</i> _{1,1}	<i>P</i> _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R_1	R_2	R ₃	R_4	R_5	KB
f	f	f	f	f	f	f	t	t	t	t	f	f
f	f	f	f	f	f	t	t	t	f	t	f	f
:	:	÷	÷	÷	:	÷	:	:	÷	÷	÷	:
f	t	f	f	f	f	f	t	t	f	t	t	f
f	t	f	f	f	f	t	t	t	t	t	t	<u>t</u>
f	t	f	f	f	t	f	t	t	t	t	t	<u>t</u>
f	t	f	f	f	t	t	t	t	t	t	t	<u>t</u>
f	t	f	f	t	f	f	t	f	f	t	t	f
	:					÷	1 :	:	:	:		
t	t	t	t	t	t	t	f	t	t	f	t	f

- Enumerate rows (different assignments to symbols),
- For $KB \models \alpha$, if KB is true in row, check that α is too

Inference by Enumeration

Function TT-Entails?(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α the query, a sentence in propositional logic symbols \leftarrow a list of the proposition symbols in KB and α return TT-Check-All(KB, α , symbols, [])

Inference by Enumeration

Function TT-Check-All(KB, α , symbols, model) returns true or false if *Empty*?(symbols) then if PL-True?(KB, model) then return PL-True?(α , model) else return true else do $P \leftarrow First$ (symbols); rest $\leftarrow Rest$ (symbols) return TT-Check-All(KB, α , rest, Extend(P, true, model)) and TT-Check-All(KB, α , rest, Extend(P, false, model))

- Depth-first enumeration of all models
 - Hence, sound and complete
- Algorithm is $O(2^n)$ for *n* symbols; problem is *co-NP-complete*

Logical Equivalence

- Two sentences are *logically equivalent* iff true in same models: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- The following should be familiar:

• A sentence is *valid* if it is true in *all* models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

- A sentence is *valid* if it is true in *all* models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

- A sentence is *valid* if it is true in *all* models,
 e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model
 e.g., A ∨ B, C

- A sentence is *valid* if it is true in *all* models,
 e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., A ∨ B, C
- A sentence is *unsatisfiable* if it is true in *no* models
 e.g., A ∧ ¬A

- A sentence is *valid* if it is true in *all* models,
 e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., A ∨ B, C
- A sentence is *unsatisfiable* if it is true in *no* models
 e.g., A ∧ ¬A
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 - I.e., prove α by reductio ad absurdum

- A sentence is *valid* if it is true in *all* models,
 e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., A ∨ B, C
- A sentence is *unsatisfiable* if it is true in *no* models
 e.g., A ∧ ¬A
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 - I.e., prove α by reductio ad absurdum
- What often proves better for determining KB ⊨ α is to show that KB ∧ ¬α is unsatisfiable.

Proof Methods

Proof methods divide into (roughly) two kinds:

- 1. Application of inference rules:
 - Legitimate (sound) generation of new sentences from old
 - *Proof* = a sequence of inference rule applications.
 - Can use inference rules as operators in a standard search algorithm.
 - Typically require translation of sentences into a normal form
- 2. Model checking:

Possibilities:

- Truth table enumeration (always exponential in *n*)
- Improved backtracking, e.g., DPLL
- Heuristic search in model space (sound but incomplete) e.g., min-conflicts hill-climbing algorithms

Specialised Inference: Forward and Backward Chaining

- We consider a very useful, restricted case: Horn Form
 - KB = *conjunction* of *Horn clauses*
- Horn clause =
 - proposition symbol; or
 - (conjunction of symbols) \Rightarrow symbol
- E.g., C, $(B \Rightarrow A)$, $(C \land D \Rightarrow B)$ Not: $(\neg B \Rightarrow A)$, $(B \lor A)$

Horn clauses

Technically a Horn clause is a *clause* or disjunction of literals, with *at most* one positive literal.

• I.e. of form
$$A_0 \vee \neg A_1 \vee \cdots \vee \neg A_n$$
 or $\neg A_1 \vee \cdots \vee \neg A_n$

- These can be written: $A_1 \wedge \cdots \wedge A_n \Rightarrow A_0$ or $A_1 \wedge \cdots \wedge A_n \Rightarrow \bot$
- We won't bother with rules of the form $A_1 \wedge \dots \wedge A_n \Rightarrow \bot$
 - Rules of this form are called *integrity constraints*.
 - They don't allow new facts to be derived, but rather rule out certain combinations of facts.

Reasoning with Horn clauses

• Modus Ponens (for Horn form): Complete for Horn KBs

$$\frac{\alpha_1,\ldots,\alpha_n,\qquad\alpha_1\wedge\cdots\wedge\alpha_n\Rightarrow\beta}{\beta}$$

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural; forward chaining runs in *linear* time

Example

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

Forward chaining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea:

- Fire any rule whose premises are satisfied in the KB,
- Add its conclusion to the KB, until query is found

Forward chaining algorithm

Procedure:

 $C := \{\};$ repeat $choose \ r \in A \ such \ that$ $r \ is \ 'b_1 \wedge \dots \wedge b_m \Rightarrow h'$ $b_i \in C \ for \ all \ i, \ and$ $h \notin C;$ $C := C \cup \{h\}$

until no more choices

Forward chaining algorithm (from text)

Function PL-FC-Entails?(KB,q) returns true or false inputs: KB the knowledge base, a set of propositional Horn clauses q the query, a proposition symbol local variables: count a table, indexed by clause, initially # of premises inferred a table, indexed by symbol, each entry initially false agenda a list of symbols, initially symbols known true in KB while agenda is not empty do $p \leftarrow Pop(agenda)$ unless inferred[p] do inferred[p] ←true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if Head[c] = q then return true; Push(Head[c], agenda)return false

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

Query Q:

• From A and B, conclude L

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

- From A and B, conclude L
- From L and B, conclude M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

- From A and B, conclude L
- From *L* and *B*, conclude *M*
- From *L* and *M*, conclude *P*

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

KB:

$$P \Rightarrow Q,$$

$$L \land M \Rightarrow P,$$

$$B \land L \Rightarrow M,$$

$$A \land P \Rightarrow L,$$

$$A \land B \Rightarrow L,$$

$$A,$$

$$B$$

- From A and B, conclude L
- From *L* and *B*, conclude *M*
- From *L* and *M*, conclude *P*
- From P conclude Q

Completeness

FC, when run to completion, derives every atomic sentence entailed by KB

- 1. FC reaches a *fixed point* where no new atomic sentences are derived
- 2. Can consider the final state as a model *m*, assigning true/false to symbols
- 3. Claim: Every clause in the original KB is true in m Proof: Suppose a clause $a_1 \land \ldots \land a_k \Rightarrow b$ is false in m Then $a_1 \land \ldots \land a_k$ is true in m and b is false in m Therefore the algorithm has not reached a fixed point!
- 4. Hence m is a model of KB
- 5. If $KB \models q$, q is true in *every* model of KB, including m
Backward chaining

- We won't develop an algorithm for backward chaining here, but will just consider it informally.
- Idea with backward chaining: Start from query q and work backwards.
- To prove *q* by BC:
 - check if q is known already;
 - otherwise prove (by BC) all premises of some rule concluding q
- Avoid loops: Check if new subgoal is already on the goal stack
- Avoid repeated work: Check if new subgoal
 - 1 has already been proved true, or
 - 2 has already failed

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \land M \Rightarrow P, & B \land L \Rightarrow M, & A \land P \Rightarrow L, \\ A \land B \Rightarrow L, & A, & B \end{array}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

Query Q:

• Establish *P* as a subgoal.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

KB:

 $\begin{array}{ll} P\Rightarrow Q, \quad L\wedge M\Rightarrow P, \quad B\wedge L\Rightarrow M, \quad A\wedge P\Rightarrow L,\\ A\wedge B\Rightarrow L, \quad A, \quad B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

KB:

 $\begin{array}{ll} P\Rightarrow Q, \quad L\wedge M\Rightarrow P, \quad B\wedge L\Rightarrow M, \quad A\wedge P\Rightarrow L,\\ A\wedge B\Rightarrow L, \quad A, \quad B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove *M* if we can prove *B* and *L*
 - *B* is known to be true

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove *M* if we can prove *B* and *L*
 - *B* is known to be true
 - *L* can be proven by proving *A* and *B*.

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove *M* if we can prove *B* and *L*
 - *B* is known to be true
 - *L* can be proven by proving *A* and *B*.
 - A and B are known to be true

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove *M* if we can prove *B* and *L*
 - *B* is known to be true
 - L can be proven by proving A and B.
 - A and B are known to be true
- For *L*:
 - L can be proven by proving A and B.
 - A and B are known to be true

・ロット (日) (日) (日) (日) (日)

KB:

 $\begin{array}{ll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove *M* if we can prove *B* and *L*
 - *B* is known to be true
 - L can be proven by proving A and B.
 - A and B are known to be true
- For *L*:
 - L can be proven by proving A and B.
 - A and B are known to be true
- L and M are true, thus P is true, thus Q is true

Forward vs. backward chaining

• FC is *data-driven*, cf. automatic, unconscious processing,

- E.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- Good for reactive agents

Forward vs. backward chaining

• FC is data-driven, cf. automatic, unconscious processing,

- E.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- Good for reactive agents
- BC is goal-driven, appropriate for problem-solving,
 - E.g., Where are my keys? How do I get a job?
 - Complexity of BC can be *much less* than linear in size of KB

- Can also sometimes be exponential in size of KB
- Good for question-answering and explanation

General Propositional Inference: Resolution

Resolution is a rule of inference defined for *Conjunctive Normal Form* (CNF)

- CNF: conjunction of disjunctions of literals
- A clause is a disjunctions of literals.

• E.g.,
$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$
.
Write as: $(A \lor \neg B)$, $(B \lor \neg C \lor \neg D)$

Resolution

• *Resolution* inference rule:

$$\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}$$
where ℓ_{i} and m_{j} are complementary literals. (I.e. $\ell_{i} \equiv \neg m_{j}$.)
E.g., $\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}$

Resolution is sound and complete for propositional logic

Using resolution to compute entailments

To show whether $KB \models \alpha$, show instead that $KB \land \neg \alpha$ is unsatisfiable:

- **1** Convert $KB \land \neg \alpha$ into conjunctive normal form.
- **2** Use resolution to determine whether $KB \land \neg \alpha$ is unsatisfiable.

3 If so then $KB \models \alpha$; otherwise $KB \not\models \alpha$.

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$$

1 Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$$

1 Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$$

1 Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
3 Move \neg inwards using de Morgan's rules and double-negation:
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
4 Apply distributivity law $(\lor \text{ over } \land)$ and flatten:
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$$

1 Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
3 Move \neg inwards using de Morgan's rules and double-negation:
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
4 Apply distributivity law $(\lor \text{ over } \land)$ and flatten:
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

For resolution, then write as

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}), (\neg P_{1,2} \lor B_{1,1}), (\neg P_{2,1} \lor B_{1,1})$$

Resolution Algorithm

Function PL-Resolution(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

```
clauses \leftarrow the set of clauses in CNF(KB \land \neg \alpha)

new \leftarrow \{ \}

loop do

if clauses contains the empty clause then return true

if C_i, C_j are resolvable clauses where

PL-Resolve(C_i, C_j) \notin clauses

then clauses \leftarrow clauses \cup PL-Resolve(C_i, C_j)

else return false
```

Note that the algorithm in the text is buggy

Resolution Example

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• E.g.:
$$KB = (B_{1,1} \equiv (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}, \\ \alpha = \neg P_{1,2}$$

• Show $KB \models \alpha$ by showing that $KB \land \neg \alpha$ is unsatisfiable:

Resolution: Another Example

<□ > < @ > < E > < E > E のQ @

Show:

$$\{r \Rightarrow u, u \Rightarrow \neg w, \neg r \Rightarrow \neg w\} \models \neg w$$

Resolution: Continued

There is a great deal that can be done to improve the basic algorithm:

- Unit resolution: propagate unit clauses (e.g. $\neg B_{1,1}$) as much as possible.
 - Note that this correspoinds to the *minimum remaining values* heuristic in constraint satisfaction!
- Eliminate tautologies
- Eliminate redundant clauses
- Eliminate clauses with literal ℓ where the complement of ℓ doesn't appear elsewhere.
- Set of support: Do resolutions on clauses with ancestor in $\neg \alpha$.
 - Similar to backward chaining keep a focus on the goal.

Summary

- Logical agents apply *inference* to a *knowledge base* to derive new information and make decisions
- Basic concepts of logic:
 - *syntax*: formal structure of *sentences*
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - *inference*: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences

Summary (Continued)

- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Forward, backward chaining are complete for Horn clauses.
- Forward chaining is linear-time for Horn clauses.
- Resolution is complete for propositional logic.
- Propositional logic lacks expressive power