Constraint Satisfaction Problems

Chapter 6

Office hours

e Office hours for Assignment 1 (ASB9810 in CSIL):

e Sep 29th(Fri) 12:00 to 13:30
e Oct 3rd(Tue) 11:30 to 13:00

Late homework policy

e You get four “late days”. Turning an assignment in late day
per day after the due date, rounded up.

e If you run out of late days, —10% grade per day.

e We will post solutions three days after the due date. No
submissions will be accepted after that.

Topics

@ Introduction and history

® Solving problems by searching. Uninformed search. Informed
(heuristic) search, incl. A*.

©® Game playing. Adversarial search.

® Constraint satisfaction.

O Logic. Logical agents, propositional logic, first-order logic.

® Planning.

@ Uncertainty. Review of probability and probabilistic inference.
® Bayesian networks.

© Learning from examples. Supervised machine learning.
Decision trees.

@ Neural networks.

#® Natural language processing. Vision and image processing.

Outline
Topics:

e CSP examples
e Backtracking search for CSPs
e Improving backtracking efficiency

e Problem structure and problem decomposition

e Local search for CSPs

Constraint satisfaction problems (CSPs)
Standard search problem:

e A stateis a “black box" — can be any data structure that
supports goal test, eval, successor

Constraint satisfaction problems (CSPs)

Standard search problem:

e A stateis a “black box" — can be any data structure that
supports goal test, eval, successor
CSP:

e Defined by a set of variables X1, ..., Xp, and a set of
constraints Cy, ..., Cp.

Each variable X; has an associated domain D;.

Each constraint C; involves some subset of the variables and
specifies allowable combinations of values for that subset.

A state is an assignment to some or all of the variable.

A solution is a complete assignment that satisfies all
constraints.
(Sometimes: maximize an objective function.)

CSPs continued

e This is a simple example of a formal representation language

e Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: Map-Coloring

Northern
Territory

Western

n Queensland
Australia

South
Australia

New South Wales

Tasmania

Variables WA, NT, @, NSW, V, SA, T
Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colours

e eg.,, WA # NT (if the language allows this), or
o (WA, NT) € {(red, green), (red, blue), (green, red), ...}

Example: Sudoku

Mo~
L
]
o

= N W

HlO 0~

U W b o N~
N = o N OlA~ Wwn

3]
~N pH O W e O =
D W H|IO 0N =N
NN WOy o
W U O N WA
WU N = BN O e
O =N OIN AW
AN NW O = O

w
O

Variables Numbers in each cell.

Domains {1,2,3,...,9}

Constraints: Each row, column and box must all have different
values.

Example: Scheduling jobs in a factory

Variables For each machine, time it starts working on each task.

Domains [0, oo]
Constraints: Each task cannot start before its prerequisites. Each

machine can work on only one task at a time.

Example: Map-Coloring contd.

Tasm"a

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green, Q = red, NSW = green, V = red, SA =
blue, T = green}

Constraint graph

e Binary CSP: each constraint relates at most two variables

e Constraint graph: nodes are variables, arcs show constraints

O—
@‘@"‘a@
®

e General-purpose CSP algorithms use the graph structure to
speed up search.

e E.g., Tasmania is an independent subproblem!

Varieties of CSPs

Discrete variables, finite domains:
e nvars, domain size d = O(d") complete assignments

e e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Varieties of CSPs

Discrete variables, finite domains:
e nvars, domain size d = O(d") complete assignments
e e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Discrete variables, infinite domains:

e integers, strings, etc.

e e.g., job scheduling, variables are start/end days for each job.
= need a constraint language
e.g., StartJob; + 5 < StartJobs

e [inear constraints solvable; nonlinear undecidable.

Varieties of CSPs

Discrete variables, finite domains:
e nvars, domain size d = O(d") complete assignments
e e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Discrete variables, infinite domains:

e integers, strings, etc.

e e.g., job scheduling, variables are start/end days for each job.
= need a constraint language
e.g., StartJob; + 5 < StartJobs

e Jinear constraints solvable; nonlinear undecidable.
Continuous variables:

e e.g., start/end times for Hubble Telescope observations.

e linear constraints solvable in poly time by LP methods.

Varieties of Constraints

Unary constraints: Involve a single variable.

e e.g., SA = green

Varieties of Constraints

Unary constraints: Involve a single variable.
e e.g., SA = green
Binary constraints: Involve pairs of variables.

e eg,SA# WA

Varieties of Constraints

Unary constraints: Involve a single variable.
e eg., SA # green
Binary constraints: Involve pairs of variables.
e eg,SA# WA
Higher-order constraints: Involve 3 or more variables.

e e.g., sudoku, cryptarithmetic column constraints

Varieties of Constraints

Unary constraints: Involve a single variable.
e eg., SA # green
Binary constraints: Involve pairs of variables.
e eg,SA# WA
Higher-order constraints: Involve 3 or more variables.
e e.g., sudoku, cryptarithmetic column constraints
Preferences (soft constraints):

e e.g., red is better than green
e Often representable by a cost for each variable
assignment.
— constrained optimization problems

Higher-Order Example: Cryptarithmetic

M|+
ol— 4
Clz=
IO O

e Variables: F T UW R O Xy X2 X3
e Domains: {0,1,2,3,4,5,6,7,8,9}
e Constraints (represented by square boxes):

e alldiff(F, T,U, W ,R, O)
e O+0=R+10- Xy, etc.

Higher-order Constraints

Higher-order constraints can be reduced to binary constraints by
introducing new auxiliary variables.

e We're not going to cover this.

o See Exercise 6.6, 3hbf™ ed. or Exercise 5.11, 2hbf™@ ed. for a
hint as to how this can be done.

e But as a result of this, we'll just deal with binary constraints.

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued
variables.

Naive Search Formulation (Incremental)

e We start with the straightforward, dumb approach, then fix it
e States are defined by the values assigned so far:
Initial state: The empty assignment, ()

Successor function: Assign a value to an unassigned variable
that does not conflict with current assignment.

e Fail if no legal assignments (not fixable!)

Goal test: The current assignment is complete

Naive Search Formulation (Incremental)

Notes:

@ This can be used for all CSPs!
® Every solution appears at depth n with n variables
e use depth-first search

Naive Search Formulation (Incremental)

Notes:

@ This can be used for all CSPs!
® Every solution appears at depth n with n variables
e use depth-first search

©® Path is irrelevant

® b= (n—{)d at depth ¢ where domain size for all variables is
d.

e there are n!d" leaves, even though there are only d” complete
assignments!

Backtracking Search

e Problem with the naive formulation:

e |t ignores that variable assignments are commutative
e i.e. [WA = red then NT = green]
same as [NT = green then WA = red|

e So just consider assignments to a single variable at each node
e Obtain: b = d and there are d" leaves

e Depth-first search for CSPs with single-variable assignments is
called backtracking search

e |.e. try assigning values of successive variables, and backtrack
when a variable has no legal values to assign.
= Backtracking search is the basic uninformed algorithm for CSPs
e Can solve n-queens for n ~ 25

Backtracking search

Function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

Function Recursive-Backtracking(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var <—Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result «—Recursive-Backtracking(assignment, csp)
if result # failure then
return result

remove {var = value} from assignment
return failure

Backtracking example

R

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

e In Chapter 3 we looked at improving performance of
uninformed searches by considering domain-specific
information.

o For CSPs, general-purpose (uninformed) methods can give
huge gains in speed.
e Consider the following questions:
@ Which variable should be assigned next?
® In what order should its values be tried?

© Can we detect inevitable failure early?
@ Can we take advantage of problem structure?

Minimum remaining values

e Minimum remaining values (MRV): Choose the variable with
the fewest legal values

SSEs SShs SSh LS

e Thus we choose the variable that seems most likely to fail.

Minimum remaining values

e Minimum remaining values (MRV): Choose the variable with
the fewest legal values

SSEs SShs SSh LS

e Thus we choose the variable that seems most likely to fail.

Degree heuristic

e Tie-breaker among MRV variables

o Degree heuristic: Choose the variable with the most
constraints on other unassigned variables

St Sau® Saal -

e In this case, begin with SA, since it is involved with the
greatest number of constraints with unassigned variables.

o l.e. Deg(SA) = 5; all others have degree < 3.

Least constraining value

e Given a variable, have to decide which value to assign.
e Here: Choose the least constraining value:

e i.e. the one that rules out the fewest values in the remaining
variables

‘ Allows 1 value for SA
S <
. ‘ Allows 0 values for SA

Least constraining value

e Given a variable, have to decide which value to assign.
e Here: Choose the least constraining value:

e i.e. the one that rules out the fewest values in the remaining
variables

‘ Allows 1 value for SA
S <
. ‘ Allows 0 values for SA

e Combining these heuristics makes 1000 queens feasible

Forward Checking

o [dea:
Keep track of remaining legal values for unassigned variables

e Terminate search when any variable has no legal values

~D

WA NT aQ NSW v SA T
(MErEErEErEErPE(EPE (BB |

Forward Checking

o [dea:
Keep track of remaining legal values for unassigned variables

e Terminate search when any variable has no legal values

SSIA 5SS

WA NT Q NSW v SA T
(ErEErEEEENE BN (B E(E |
(| "EErEEPEErE| PE[EEE|

Forward checking

o [dea:
Keep track of remaining legal values for unassigned variables

e Terminate search when any variable has no legal values

SSEA SSh S

WA NT Q NSW v SA T
(ErEErEEEENE BN (B E(E |
(| "EErEEPEErE| PE[EEE|
(_— Hoeow e EmrE| EENE|

Forward checking

o [dea:
Keep track of remaining legal values for unassigned variables

e Terminate search when any variable has no legal values

S SSE SeEs S

WA NT Q NSW v SA T
(ErEErEEEENE BN (B E(E |
(| "EErEEPEErE| PE[EEE|
(_— Hoeow e EmrE| EENE|
(— |] | — | [mm |

Constraint propagation

e Forward checking propagates information from assigned to
unassigned variables.

e Doesn't provide early detection for all failures.

e E.g., second step in the previous example:

S SSh S

WA NT Q NSW v SA T
(ErEErEEEENE BN (B E(E |
(| "EErEEPEErE| PE[EEE|
(_— Hoeow e EmrE| EENE|

e NT and SA cannot both be bluel

o Constraint propagation repeatedly enforces constraints locally

Constraint Propagation (cont'd)

e Constraint propagation involves propagating the implications
of a constraint on one variable onto other variables.
e Must be fast

e l.e. it's no good reducing the amount of search if we spend a
whole lot of time propagating constraints.

Arc Consistency

e Simplest form of propagation, makes each arc consistent

e X — Y is consistent iff
for every value x of X there is some allowed y of Y.

S SSh S

WA NT Q NSW v SA T
[— | Hjpewm EmoE|]

\é/

Arc Consistency

e Simplest form of propagation, makes each arc consistent.

e X — Y is consistent iff
for every value x of X there is some allowed y.

S SSh S

WA NT Q NSW v SA T
[— | Hjpmewe XeomE|]

\}/

Arc Consistency

e Simplest form of propagation, makes each arc consistent.

e X — Y is consistent iff
for every value x of X there is some allowed y.

S SSh S

WA NT Q NSW v SA T
[— | IS o-dal]

\«

o If X loses a value, neighbors of X need to be rechecked.

Arc Consistency

e Simplest form of propagation, makes each arc consistent.

e X — Y is consistent iff
for every value x of X there is some allowed y

SSIA SSR S«

WA NT Q NSW v SA T

(] = CID_o_ G 1D (T 1

— ¢ —

o If X loses a value, neighbors of X need to be rechecked.

e Arc consistency detects failure earlier than forward checking.

e Can be run as a preprocessor or after each assignment.

Arc Consistency Algorithm

Function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp a binary CSP with variables {X1, Xa, ..., Xy}
local variables: queue a queue of arcs, initially all the arcs in csp
while queue is not empty do
(Xi, Xj) <—Remove-First(queue)
if Remove-Inconsistent-Values(X;, X;) then
for each Xy in Neighbors[X;] do add (Xk, X;) to queue

Function Remove-Inconsistent-Values(X;, X;) returns removed?
removed? <«false
for each x in Domain[X;] do
if no y € Domain[Xj] allows (x,y) to satisfy the X;, X; constraint
then delete x from Domain[X;]; removed? <true
return removed?

Arc Consistency Algorithm

Function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp a binary CSP with variables {X1, Xa, ..., Xy}
local variables: queue a queue of arcs, initially all the arcs in csp
while queue is not empty do
(Xi, Xj) <—Remove-First(queue)
if Remove-Inconsistent-Values(X;, X;) then
for each Xy in Neighbors[X;] do add (Xk, X;) to queue

Function Remove-Inconsistent-Values(X;, X;) returns removed?
removed? <«false
for each x in Domain[X;] do
if no y € Domain[Xj] allows (x,y) to satisfy the X;, X; constraint
then delete x from Domain[X;]; removed? <true
return removed?

ww O(n?d®), can reduce to O(n?d?), but detecting all is NP-hard

Problem Structure

O—
@‘@'ea@

@

e Tasmania and mainland are independent subproblems

¢ Identifiable as connected components of constraint graph

Problem Structure contd.

e Suppose each subproblem has ¢ variables out of n total

e Worst-case solution cost is (n/c) x d€, linearin n

Problem Structure contd.

e Suppose each subproblem has ¢ variables out of n total
e Worst-case solution cost is (n/c) x d€, linearin n
e Eg,n=80,d=2,¢c=20

e 280 = 4 pillion years at 10 million nodes/sec
e 4.220 = 0.4 seconds at 10 million nodes/sec

Problem Structure contd.

e Suppose each subproblem has ¢ variables out of n total

Worst-case solution cost is (n/c) x d€, linearin n
Eg,n=80,d=2¢c=20

e 280 = 4 pillion years at 10 million nodes/sec
e 4.220 = 0.4 seconds at 10 million nodes/sec

= So a heurisitc to consider is to assign values to variables so as
to break a problem into independent subproblems.

Tree-structured CSPs

e Theorem: If the constraint graph is a tree, the CSP can be
solved in O(nd?) time

e Compare to general CSPs, where worst-case time is O(d")

e This property also applies to logical and probabilistic
reasoning:

1= an important example of the relation between syntactic
restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

@ Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

(&) (E)
e@ QG (BABHODKEXE)

® For j from n down to 2, apply
Removelnconsistent(Parent(X;), X;)

©® For j from 1 to n, assign X; consistently with Parent(X;)

Nearly Tree-Structured CSPs: Cutset
Conditioning

e Conditioning: Instantiate a variable, prune its neighbors’

@‘@"" o 3,

e Cycle cutset: Instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

o Cutset size ¢ = runtime O(d° - (n — c)d?)
1 Very fast for small ¢

Iterative Algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states,

e i.e., all variables assigned
To apply to CSPs:

o allow states with unsatisfied constraints.

e operators reassign variable values.
Variable selection: randomly select any conflicted variable.
Value selection by min-conflicts heuristic:

e choose value that violates the fewest constraints.

e i.e., hillclimb with h(n) = total number of violated constraints.

Can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)

Summary

CSPs are a special kind of problem:

o States are defined by values of a fixed set of variables.
o Goal test defined by constraints on variable values.

Backtracking = depth-1°t search with one variable assigned
per node.
Var. ordering and value selection heuristics help a great deal.

Forward checking prevents assignments that guarantee later
failure.

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies.

The CSP representation allows analysis of problem structure.
Tree-structured CSPs can be solved in linear time.

Iterative min-conflicts is usually effective in practice.

