
Constraint Satisfaction Problems

Chapter 6



Office hours

• Office hours for Assignment 1 (ASB9810 in CSIL):
• Sep 29th(Fri) 12:00 to 13:30
• Oct 3rd(Tue) 11:30 to 13:00



Late homework policy

• You get four “late days”. Turning an assignment in late day
per day after the due date, rounded up.

• If you run out of late days, −10% grade per day.

• We will post solutions three days after the due date. No
submissions will be accepted after that.



Topics

1 Introduction and history

2 Solving problems by searching. Uninformed search. Informed
(heuristic) search, incl. A*.

3 Game playing. Adversarial search.

4 Constraint satisfaction.

5 Logic. Logical agents, propositional logic, first-order logic.

6 Planning.

7 Uncertainty. Review of probability and probabilistic inference.

8 Bayesian networks.

9 Learning from examples. Supervised machine learning.
Decision trees.

10 Neural networks.

11 Natural language processing. Vision and image processing.



Outline

Topics:

• CSP examples

• Backtracking search for CSPs
• Improving backtracking efficiency

• Problem structure and problem decomposition

• Local search for CSPs



Constraint satisfaction problems (CSPs)

Standard search problem:

• A state is a “black box” – can be any data structure that
supports goal test, eval, successor

CSP:

• Defined by a set of variables X1, . . . , Xn, and a set of
constraints C1, . . . , Cm.

• Each variable Xi has an associated domain Di .

• Each constraint Ci involves some subset of the variables and
specifies allowable combinations of values for that subset.

• A state is an assignment to some or all of the variable.

• A solution is a complete assignment that satisfies all
constraints.
(Sometimes: maximize an objective function.)



Constraint satisfaction problems (CSPs)

Standard search problem:

• A state is a “black box” – can be any data structure that
supports goal test, eval, successor

CSP:

• Defined by a set of variables X1, . . . , Xn, and a set of
constraints C1, . . . , Cm.

• Each variable Xi has an associated domain Di .

• Each constraint Ci involves some subset of the variables and
specifies allowable combinations of values for that subset.

• A state is an assignment to some or all of the variable.

• A solution is a complete assignment that satisfies all
constraints.
(Sometimes: maximize an objective function.)



CSPs continued

• This is a simple example of a formal representation language

• Allows useful general-purpose algorithms with more power
than standard search algorithms



Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red , green, blue}
Constraints: adjacent regions must have different colours

• e.g., WA 6= NT (if the language allows this), or

• (WA,NT ) ∈ {(red , green), (red , blue), (green, red), . . .}



Example: Sudoku

Variables Numbers in each cell.
Domains {1, 2, 3, . . . , 9}
Constraints: Each row, column and box must all have different
values.



Example: Scheduling jobs in a factory

Variables For each machine, time it starts working on each task.
Domains [0,∞]
Constraints: Each task cannot start before its prerequisites. Each
machine can work on only one task at a time.



Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red ,NT = green,Q = red ,NSW = green,V = red ,SA =
blue,T = green}



Constraint graph

• Binary CSP: each constraint relates at most two variables

• Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

• General-purpose CSP algorithms use the graph structure to
speed up search.

• E.g., Tasmania is an independent subproblem!



Varieties of CSPs

Discrete variables, finite domains:

• n vars, domain size d =⇒ O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Discrete variables, infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job.
⇒ need a constraint language
e.g., StartJob1 + 5 ≤ StartJob3

• linear constraints solvable; nonlinear undecidable.

Continuous variables:

• e.g., start/end times for Hubble Telescope observations.

• linear constraints solvable in poly time by LP methods.



Varieties of CSPs

Discrete variables, finite domains:

• n vars, domain size d =⇒ O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Discrete variables, infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job.
⇒ need a constraint language
e.g., StartJob1 + 5 ≤ StartJob3

• linear constraints solvable; nonlinear undecidable.

Continuous variables:

• e.g., start/end times for Hubble Telescope observations.

• linear constraints solvable in poly time by LP methods.



Varieties of CSPs

Discrete variables, finite domains:

• n vars, domain size d =⇒ O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

Discrete variables, infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job.
⇒ need a constraint language
e.g., StartJob1 + 5 ≤ StartJob3

• linear constraints solvable; nonlinear undecidable.

Continuous variables:

• e.g., start/end times for Hubble Telescope observations.

• linear constraints solvable in poly time by LP methods.



Varieties of Constraints

Unary constraints: Involve a single variable.

• e.g., SA 6= green

Binary constraints: Involve pairs of variables.

• e.g., SA 6= WA

Higher-order constraints: Involve 3 or more variables.

• e.g., sudoku, cryptarithmetic column constraints

Preferences (soft constraints):

• e.g., red is better than green
• Often representable by a cost for each variable

assignment.
→ constrained optimization problems



Varieties of Constraints

Unary constraints: Involve a single variable.

• e.g., SA 6= green

Binary constraints: Involve pairs of variables.

• e.g., SA 6= WA

Higher-order constraints: Involve 3 or more variables.

• e.g., sudoku, cryptarithmetic column constraints

Preferences (soft constraints):

• e.g., red is better than green
• Often representable by a cost for each variable

assignment.
→ constrained optimization problems



Varieties of Constraints

Unary constraints: Involve a single variable.

• e.g., SA 6= green

Binary constraints: Involve pairs of variables.

• e.g., SA 6= WA

Higher-order constraints: Involve 3 or more variables.

• e.g., sudoku, cryptarithmetic column constraints

Preferences (soft constraints):

• e.g., red is better than green
• Often representable by a cost for each variable

assignment.
→ constrained optimization problems



Varieties of Constraints

Unary constraints: Involve a single variable.

• e.g., SA 6= green

Binary constraints: Involve pairs of variables.

• e.g., SA 6= WA

Higher-order constraints: Involve 3 or more variables.

• e.g., sudoku, cryptarithmetic column constraints

Preferences (soft constraints):

• e.g., red is better than green
• Often representable by a cost for each variable

assignment.
→ constrained optimization problems



Higher-Order Example: Cryptarithmetic

OWTF U R

+

OWT

OWT

F O U R

X2 X1X3

• Variables: F T U W R O X1 X2 X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints (represented by square boxes):

• alldiff (F ,T ,U,W ,R,O)
• O + O = R + 10 · X1, etc.



Higher-order Constraints

Higher-order constraints can be reduced to binary constraints by
introducing new auxiliary variables.

• We’re not going to cover this.

• See Exercise 6.6, 3hbf rd ed. or Exercise 5.11, 2hbf nd ed. for a
hint as to how this can be done.

• But as a result of this, we’ll just deal with binary constraints.



Real-world CSPs

• Assignment problems
e.g., who teaches what class

• Timetabling problems
e.g., which class is offered when and where?

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Floorplanning

+ Notice that many real-world problems involve real-valued
variables.



Naive Search Formulation (Incremental)

• We start with the straightforward, dumb approach, then fix it

• States are defined by the values assigned so far:

Initial state: The empty assignment, ∅
Successor function: Assign a value to an unassigned variable

that does not conflict with current assignment.
• Fail if no legal assignments (not fixable!)

Goal test: The current assignment is complete



Naive Search Formulation (Incremental)

Notes:

1 This can be used for all CSPs!

2 Every solution appears at depth n with n variables
• use depth-first search

3 Path is irrelevant

4 b = (n − `)d at depth ` where domain size for all variables is
d .

• there are n!dn leaves, even though there are only dn complete
assignments!



Naive Search Formulation (Incremental)

Notes:

1 This can be used for all CSPs!

2 Every solution appears at depth n with n variables
• use depth-first search

3 Path is irrelevant

4 b = (n − `)d at depth ` where domain size for all variables is
d .

• there are n!dn leaves, even though there are only dn complete
assignments!



Backtracking Search

• Problem with the naive formulation:

• It ignores that variable assignments are commutative
• i.e. [WA = red then NT = green]

same as [NT = green then WA = red ]

• So just consider assignments to a single variable at each node

• Obtain: b = d and there are dn leaves

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

• I.e. try assigning values of successive variables, and backtrack
when a variable has no legal values to assign.

+ Backtracking search is the basic uninformed algorithm for CSPs
• Can solve n-queens for n ≈ 25



Backtracking search

Function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

Function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var ←Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result ←Recursive-Backtracking(assignment, csp)
if result 6= failure then

return result
remove {var = value} from assignment

return failure



Backtracking example



Backtracking example



Backtracking example



Backtracking example



Improving backtracking efficiency

• In Chapter 3 we looked at improving performance of
uninformed searches by considering domain-specific
information.

• For CSPs, general-purpose (uninformed) methods can give
huge gains in speed.

• Consider the following questions:

1 Which variable should be assigned next?
2 In what order should its values be tried?
3 Can we detect inevitable failure early?
4 Can we take advantage of problem structure?



Minimum remaining values

• Minimum remaining values (MRV): Choose the variable with
the fewest legal values

• Thus we choose the variable that seems most likely to fail.



Minimum remaining values

• Minimum remaining values (MRV): Choose the variable with
the fewest legal values

• Thus we choose the variable that seems most likely to fail.



Degree heuristic

• Tie-breaker among MRV variables

• Degree heuristic: Choose the variable with the most
constraints on other unassigned variables

• In this case, begin with SA, since it is involved with the
greatest number of constraints with unassigned variables.

• I.e. Deg(SA) = 5; all others have degree ≤ 3.



Least constraining value

• Given a variable, have to decide which value to assign.

• Here: Choose the least constraining value:
• i.e. the one that rules out the fewest values in the remaining

variables

Allows 1 value for SA

Allows 0 values for SA

• Combining these heuristics makes 1000 queens feasible



Least constraining value

• Given a variable, have to decide which value to assign.

• Here: Choose the least constraining value:
• i.e. the one that rules out the fewest values in the remaining

variables

Allows 1 value for SA

Allows 0 values for SA

• Combining these heuristics makes 1000 queens feasible



Forward Checking

• Idea:
Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward Checking

• Idea:
Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward checking

• Idea:
Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Forward checking

• Idea:
Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

WA NT Q NSW V SA T



Constraint propagation

• Forward checking propagates information from assigned to
unassigned variables.

• Doesn’t provide early detection for all failures.

• E.g., second step in the previous example:

WA NT Q NSW V SA T

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally



Constraint Propagation (cont’d)

• Constraint propagation involves propagating the implications
of a constraint on one variable onto other variables.

• Must be fast
• I.e. it’s no good reducing the amount of search if we spend a

whole lot of time propagating constraints.



Arc Consistency

• Simplest form of propagation, makes each arc consistent

• X → Y is consistent iff
for every value x of X there is some allowed y of Y .

WA NT Q NSW V SA T



Arc Consistency

• Simplest form of propagation, makes each arc consistent.

• X → Y is consistent iff
for every value x of X there is some allowed y .

WA NT Q NSW V SA T



Arc Consistency

• Simplest form of propagation, makes each arc consistent.

• X → Y is consistent iff
for every value x of X there is some allowed y .

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked.



Arc Consistency

• Simplest form of propagation, makes each arc consistent.

• X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

• If X loses a value, neighbors of X need to be rechecked.

• Arc consistency detects failure earlier than forward checking.

• Can be run as a preprocessor or after each assignment.



Arc Consistency Algorithm

Function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp a binary CSP with variables {X1,X2, . . . ,Xn}
local variables: queue a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi ,Xj) ←Remove-First(queue)
if Remove-Inconsistent-Values(Xi ,Xj) then

for each Xk in Neighbors[Xi ] do add (Xk ,Xi ) to queue

Function Remove-Inconsistent-Values(Xi ,Xj) returns removed?
removed? ←false
for each x in Domain[Xi ] do

if no y ∈ Domain[Xj ] allows (x,y) to satisfy the Xi ,Xj constraint
then delete x from Domain[Xi ]; removed? ←true

return removed?

+ O(n2d3), can reduce to O(n2d2), but detecting all is NP-hard



Arc Consistency Algorithm

Function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp a binary CSP with variables {X1,X2, . . . ,Xn}
local variables: queue a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi ,Xj) ←Remove-First(queue)
if Remove-Inconsistent-Values(Xi ,Xj) then

for each Xk in Neighbors[Xi ] do add (Xk ,Xi ) to queue

Function Remove-Inconsistent-Values(Xi ,Xj) returns removed?
removed? ←false
for each x in Domain[Xi ] do

if no y ∈ Domain[Xj ] allows (x,y) to satisfy the Xi ,Xj constraint
then delete x from Domain[Xi ]; removed? ←true

return removed?

+ O(n2d3), can reduce to O(n2d2), but detecting all is NP-hard



Problem Structure

Victoria

WA

NT

SA

Q

NSW

V

T

• Tasmania and mainland are independent subproblems

• Identifiable as connected components of constraint graph



Problem Structure contd.

• Suppose each subproblem has c variables out of n total

• Worst-case solution cost is (n/c)× dc , linear in n

• E.g., n = 80, d = 2, c = 20

• 280 = 4 billion years at 10 million nodes/sec
• 4 · 220 = 0.4 seconds at 10 million nodes/sec

+ So a heurisitc to consider is to assign values to variables so as
to break a problem into independent subproblems.



Problem Structure contd.

• Suppose each subproblem has c variables out of n total

• Worst-case solution cost is (n/c)× dc , linear in n

• E.g., n = 80, d = 2, c = 20

• 280 = 4 billion years at 10 million nodes/sec
• 4 · 220 = 0.4 seconds at 10 million nodes/sec

+ So a heurisitc to consider is to assign values to variables so as
to break a problem into independent subproblems.



Problem Structure contd.

• Suppose each subproblem has c variables out of n total

• Worst-case solution cost is (n/c)× dc , linear in n

• E.g., n = 80, d = 2, c = 20

• 280 = 4 billion years at 10 million nodes/sec
• 4 · 220 = 0.4 seconds at 10 million nodes/sec

+ So a heurisitc to consider is to assign values to variables so as
to break a problem into independent subproblems.



Tree-structured CSPs

A

B

C

D

E

F

• Theorem: If the constraint graph is a tree, the CSP can be
solved in O(n d2) time

• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to logical and probabilistic
reasoning:

+ an important example of the relation between syntactic
restrictions and the complexity of reasoning.



Algorithm for tree-structured CSPs

1 Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2 For j from n down to 2, apply
RemoveInconsistent(Parent(Xj),Xj)

3 For j from 1 to n, assign Xj consistently with Parent(Xj)



Nearly Tree-Structured CSPs: Cutset
Conditioning

• Conditioning: Instantiate a variable, prune its neighbors’
domains

Victoria

WA

NT

Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

• Cycle cutset: Instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

• Cutset size c =⇒ runtime O(dc · (n − c)d2)
+ Very fast for small c



Iterative Algorithms for CSPs

• Hill-climbing, simulated annealing typically work with
“complete” states,

• i.e., all variables assigned

• To apply to CSPs:
• allow states with unsatisfied constraints.
• operators reassign variable values.

• Variable selection: randomly select any conflicted variable.

• Value selection by min-conflicts heuristic:
• choose value that violates the fewest constraints.
• i.e., hillclimb with h(n) = total number of violated constraints.

• Can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)



Summary

• CSPs are a special kind of problem:

• States are defined by values of a fixed set of variables.
• Goal test defined by constraints on variable values.

• Backtracking = depth-1st search with one variable assigned
per node.

• Var. ordering and value selection heuristics help a great deal.

• Forward checking prevents assignments that guarantee later
failure.

• Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies.

• The CSP representation allows analysis of problem structure.

• Tree-structured CSPs can be solved in linear time.

• Iterative min-conflicts is usually effective in practice.


