
Game Playing: Adversarial Search

Chapter 5

Outline

• Games

• Perfect play
• minimax search
• α–β pruning

• Resource limits and approximate evaluation

• Games of chance

• Games of imperfect information

Games vs. Search Problems

In games we have:

• “Unpredictable” opponent ⇒ solution is a strategy, specifying
a move for every possible opponent reply

• Time limits: Unlikely to find goal; do the best that you can.

Game playing goes back a long way:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann,
1944)

• Finite horizon, approx. evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Games vs. Search Problems

In games we have:

• “Unpredictable” opponent ⇒ solution is a strategy, specifying
a move for every possible opponent reply

• Time limits: Unlikely to find goal; do the best that you can.

Game playing goes back a long way:

• Computer considers possible lines of play (Babbage, 1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann,
1944)

• Finite horizon, approx. evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation (Samuel, 1952–57)

• Pruning to allow deeper search (McCarthy, 1956)

Types of Games

deterministic chance

perfect information

imperfect information

Types of Games

deterministic chance

perfect information chess, checkers, backgammon
go, othello, monopoly

imperfect information battleships, bridge, poker, scrabble,
blind tictactoe poker, war

Two-Player Games

• Two players, MAX and MIN, who take turns playing.

• Main game components:

Initial state: Initial game position.
Actions: The set of legal moves in a state

Transition function: Returns a list of legal moves and the
resulting state

Terminal test: Determines when the game is over.
Utility function: Value of a terminal state.

• Also called a objective or payoff function
• Generally we’ll deal with zero-sum games.

• Later we’ll talk about a static evaluation function, which gives
a value to every game state.

Game Tree (2-player, deterministic, turns)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

Minimax

• Perfect play for deterministic, perfect-information games

• Idea: choose move to position with highest minimax value
= best achievable payoff against best play

• E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13

A
12

A
11

A
21

A
23

A
22

A
33

A
32

A
31

3 2 2

Minimax Value

MinimaxValue(n) =
Utility(n) if n is a terminal node
maxs∈Successors(n)MinimaxValue(s) if n is a MAX node
mins∈Successors(n)MinimaxValue(s) if n is a MIN node

Minimax Algorithm

Function Minimax-Decision(state) returns an action
inputs: state current state in game
return a ∈ Actions(state) maximizing Min-Value(Result(a, state))

Function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ←−∞
for s in Successors(state) do v ←Max(v, Min-Value(s))
return v

Function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ←∞
for s in Successors(state) do v ←Min(v, Max-Value(s))
return v

Properties of Minimax

Complete: ??

Properties of Minimax

Complete: Yes, if tree is finite. (Chess has specific rules for this).

Optimal: ??

Properties of Minimax

Complete: Yes, if tree is finite.

Optimal: Yes, against a rational opponent. Otherwise??

Time complexity: ??

Properties of Minimax

Complete: Yes, if tree is finite.

Optimal: Yes, against an optimal opponent. Otherwise??

Time complexity: O(bm)

Space complexity: ??

Properties of Minimax

Complete: Yes, if tree is finite.

Optimal: Yes, against an optimal opponent. Otherwise??

Time complexity: O(bm)

Space complexity: O(bm) (depth-first exploration)

Properties of Minimax

Complete: Yes, if tree is finite.

Optimal: Yes, against an optimal opponent. Otherwise??

Time complexity: O(bm)

Space complexity: O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈ 100 for “reasonable” games
+ Exact solution is completely infeasible

• But do we need to explore every path?

α–β Pruning

• Game tree search is inherently exponential

• However we can speed things up by pruning parts of the
search space that are guaranteed to be inferior.

• α–β pruning returns the same move as minimax, but prunes
branches that can’t affect the final outcome.

α–β Pruning Example

MAX

3 12 8

MIN 3

3

α–β Pruning Example

MAX

3 12 8

MIN 3

2

2

X X

3

α–β Pruning Example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

α–β Pruning Example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

α–β Pruning Example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

The General Case

..

..

..

MAX

MIN

MAX

MIN
V

• α is the best value (to max) found so far.

• If V is worse than α, max will avoid it.
• So this node won’t be reached in play.
• So prune that branch

• Define β similarly for min

The General Case

• α is the value of the best (i.e. maximum) choice we have
found so far for MAX.

• β is the value of the best (i.e. minimum) choice we have
found so far for MIN.

• α–β search updates the values of α and β as it progresses.

• It prunes branches at a node if they are known to be worse
than the current α (for MAX) or β (for MIN) values.

Note:

• The α values of MAX nodes can never decrease.

• The β values of MIN nodes can never increase.

α–β Search

Observe:

• Search can be discontinued below any MIN node having β
value ≤ the α value of any of its MAX node ancestors.

• The final value of this MIN node can then be set to its β value.

• Search can be discontinued below any MAX node having α
value ≥ the β value of any of its MIN node ancestors.

• The final value of this MAX node can then be set to its α
value.

Main point (again):

• The α value of a MAX node = the current largest final value
of its successors.

• The β value of a MIN node = the current smallest final value
of its successors.

The α–β Algorithm

Function Alpha-Beta-Decision(state) returns an action
v ←Max-Value(state,−∞,∞)
return the a in Actions(state) with value v

The α–β Algorithm

Function Max-Value(state, α, β) returns a utility value
inputs: state current state in game
α, the value of the best alternative for max along the path to state
β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v ←−∞
for s in Successors(state) do

v ←Max(v, Min-Value(s, α, β))
if v ≥ β then return v
α ←Max(α, v)

return v

Function Min-Value(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed

+ This is a bit simpler than the algorithm in the 3rd ed.

Properties of α–β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

Q: What if you “reverse” a perfect ordering?

• A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

• Unfortunately, for chess, 3550 is still impossible!

Properties of α–β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth
Q: What if you “reverse” a perfect ordering?

• A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

• Unfortunately, for chess, 3550 is still impossible!

Properties of α–β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth
Q: What if you “reverse” a perfect ordering?

• A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

• Unfortunately, for chess, 3550 is still impossible!

Resource Limits

• Most games cannot be exhaustively searched.

• So have to terminate search before hitting a goal state
(usually)

• Standard approach:
• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search)
• Use Eval instead of Utility/Goal-Test

i.e., evaluation function that estimates desirability of
position

• Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
(if we have a good static evaluation function).

Evaluation Functions

Black to move

White slightly better

White to move

Black winning

• For chess, typically linear weighted sum of features
Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

• e.g., w1 = 9 with
f1(s) = (# of white queens) – (# of black queens), etc.

Evaluation Functions: Issues

• Quiescence vs. non-quiescence

• Search to a quiescent area (i.e. where the static evaluation
function doesn’t change much between moves).

• Or (pretty much the same thing): if the static evaluation
function changes radically between moves, keep searcing.

• Horizon effect

Digression: Exact Values Don’t Matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

• Behaviour is preserved under any monotonic transformation of
Eval

• Only the order matters:
• payoff in deterministic games acts as an ordinal utility function

Deterministic Games in Practice: Checkers

• Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994.

• Used an endgame database giving perfect play for all positions
with ≤ 8 pieces on the board, a total of 443,748,401,247
positions.

• Now totally solved (by computer)

Deterministic Games in Practice: Chess

• Deep Blue defeated human world champion Gary Kasparov in
a six-game match in 1997.

• Deep Blue searched 200 million positions per second, used
very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Deterministic Games in Practice: Othello

• Human champions refuse to compete against computers,
which are too good.

• Would make a good AI assignment!

Deterministic Games in Practice: Go

• Until recently, human champions refused to compete against
computers, which were too bad.

• In chess, there are something around 1040 positions, in Go
there are 10170 positions.

• Go was considered hard because
• the search space is staggering and
• it was extremely difficult to evaluate a board position.

• However, in March 2016, AlphaGo beat Lee Sedol (winner of
18 world titles) 4 games to 1

• AlphaGo combines learning via neural networks, along with
Monte Carlo tree search.

Deterministic Games in Practice:
DeepBlue vs. AlphaGo

Deep Blue

• Handcrafted chess knowledge

• Alpha-beta search guided by heuristic evaluation function

• 200 million positions / second

AlphaGo

• Knowledge learned from expert games and self-play

• Monte-Carlo search guided by policy and value networks

• 60,000 positions / second

Nondeterministic Games: Backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Nondeterministic Games in General

• In nondeterministic games, chance is introduced by dice,
card-shuffling, etc.

• Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

ExpectiMinimax Value

ExpectiMinimaxValue(n) =

Utility(n) if n is a terminal node

maxs∈Successors(n) ExpectiMinimaxValue(s)
if n is a MAX node

mins∈Successors(n) ExpectiMinimaxValue(s)
if n is a MIN node

Σs∈Successors(n) P(s).ExpectiMinimaxValue(s)
if n is a chance node

Algorithm for Nondeterministic Games

• Expectiminimax gives perfect play

• Given the chance nodes, MAX may not get the best outcome.

• But MAX’s move gives the best expected outcome.

• Algorithm is just like Minimax, except we must also handle
chance nodes:
. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of
Successors(state)

if state is a Min node then
return the lowest ExpectiMinimax-Value of

Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of
Successors(state)

. . .

Nondeterministic Games in Practice

• Dice rolls increase b: 21 possible rolls with 2 dice

• Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)
depth 4 = 20× (21× 20)3 ≈ 1.2× 109

• As depth increases, probability of reaching a given node
shrinks

• value of lookahead is diminished

• α–β pruning is much less effective

• TDGammon uses depth-2 search + very good Eval
≈ world-champion level

Digression: Exact Values DO Matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

• Behaviour is preserved only by positive linear transformation
of Eval

• Hence Eval should be proportional to the expected payoff

Games of Imperfect Information

• E.g., card games, where opponent’s initial cards are unknown

• Typically we can calculate a probability for each possible deal

• Seems just like having one big dice roll at the beginning of the
game∗

• Idea: Compute the minimax value of each action in each deal,
then choose the action with highest expected value over
all deals∗

• Special case: If an action is optimal for all deals, it’s optimal.∗

• GIB, current best bridge program, approximates this idea by

1. generating 100 deals consistent with bidding information
2. picking the action that wins most tricks on average

∗ but in fact this doesn’t quite work out (as discussed next)

Example

• Four-card bridge/whist/hearts hand, Max to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

Example

• Four-card bridge/whist/hearts hand, Max to play first

6

4

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6MAX

MIN

MAX

MIN

Example

• Four-card bridge/whist/hearts hand, Max to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7

2 9 3 2 9 3 2 3

7

3

6

4
6 6 7

3444
6

6

7

34

−0.5

−0.5

MAX

MIN

MAX

MIN

MAX

MIN

Commonsense Example

1. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• take the left fork and you’ll find a mound of jewels;
• take the right fork and you’ll be run over by a bus.

Commonsense Example

1. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• take the left fork and you’ll find a mound of jewels;
• take the right fork and you’ll be run over by a bus.

2. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• take the left fork and you’ll be run over by a bus;
• take the right fork and you’ll find a mound of jewels.

Commonsense Example

1. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• take the left fork and you’ll find a mound of jewels;
• take the right fork and you’ll be run over by a bus.

2. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• take the left fork and you’ll be run over by a bus;
• take the right fork and you’ll find a mound of jewels.

3. Road A leads to a small heap of gold pieces

Road B leads to a fork:

• guess correctly and you’ll find a mound of jewels;
• guess incorrectly and you’ll be run over by a bus.

Proper Analysis

• The intuition that the value of an action is the average of its
values in all actual states is WRONG

• With partial observability, value of an action depends on the
information state or belief state that the agent is in.

• Can generate and search a tree of information states

• Leads to rational behaviors such as
• Acting to obtain information
• Signalling to one’s partner
• Acting randomly to minimize information disclosure

Summary

• Games are fun to work on!

• They illustrate several important points about AI

• perfection is unattainable ⇒ must approximate
• good idea to think about what to think about
• uncertainty constrains the assignment of values to states
• optimal decisions depend on information state, not real state

