
Local Search

Chapter 4



Local Search: Outline

We consider next local search, where we maintain a single current
state.

• Iterative improvement algorithms

• Hill-climbing

• Very briefly:
• Simulated annealing
• Local beam search



Iterative improvement algorithms

• Idea: In many optimization problems, the path to the goal is
irrelevant.

• The goal state itself is the solution
• E.g. the n-queens problem

• So we may formulate a problem so that:
state space = set of “complete” configurations

• Examples:
• find optimal configuration, e.g., TSP
• find configuration satisfying constraints, e.g., timetable
• also, e.g. propositional satisfiability (SAT)

• In such cases, we can use iterative improvement algorithms
• Keep a single “current” state; try to improve it
• Uses constant space; suitable for online as well as offline search



Example: Travelling Salesperson Problem

• Start with any complete tour, perform pairwise exchanges

• Variants of this approach get within 1% of optimal very
quickly with thousands of cities.



Example: n-queens

• Goal: Put n queens on an n × n board with no two queens on
the same row, column, or diagonal.

• Move a queen to reduce number of conflicts.

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1, 000, 000



Example: n-queens

• Goal: Put n queens on an n × n board with no two queens on
the same row, column, or diagonal.

• Move a queen to reduce number of conflicts.

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1, 000, 000



Hill-climbing (or gradient ascent/descent)

• Idea: Take the best move from a given position

• Aka greedy local search.

• “Like climbing a mountain in thick fog with amnesia”



Hill-climbing

Function Hill-Climbing(problem) returns a state that is a local
maximum

inputs: problem a problem
local variables: current a node

neighbor a node
current ←Make-Node(Initial-State[problem])
loop do

neighbor ←a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current ←neighbor

end



Hill-climbing contd.

Useful to consider state-space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder



Hill-climbing contd.

• Hill climbing often gets stuck:

Local Maxima: I.e. local “peaks”.
E.g. 8-queens gets stuck 86% of the time.

Ridges: Essentially give a series of local maxima.
Difficult for hill-climbing to navigate

Plateaux: A plateau is a flat area in the search space.
Search degenerates to exhaustive search, or may
loop.



Hill-climbing: Strategies if stuck

• Random-restart hill climbing: Overcomes local maxima
• Trivially complete if a goal is known to exist.

• Random sideways moves: Escape from shoulders but may loop
on flat maxima

• Can also define a hill-climbing version of depth-first search.
(But then no longer a local search.)



Another Example: Propositional
Satisfiabilty

• Goal: Find a satisfying assignment for a set of clauses in CNF.

• E.g.

(p ∨ q ∨ ¬r) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬q)

is satisfied by setting: p = true, q = false, r = true.



Propositional Satisfiabilty

• Outline of an algorithm:

Function Sat(problem) returns a solution or failure
Assign truth values arbitrarily to the set of propositional variables
loop do {

if the truth assignment satisfies problem
then return the assignment

if timeout then return failure
Find l such that l̄ gives the largest increase in clauses satisfied
Change the truth value of l to l̄ .
}

+ If l is p then l̄ is ¬p;
if l is ¬p then l̄ is p.



Propositional Satisfiabilty

• This algorithm, when proposed in the 1990’s, worked very well.

• The algorithm also featured random restarts. (I.e. after a
while reassign all variable and start over).

• It handily beat all previous algorithms (notably DPLL).

• Subsequent work in satisfiability has led to huge
improvements over the naive greedy algorithm.

• Aside: Another thing that this work pointed out was the
importance of choice of test instances.

• DPLL (and other algorithms) appeared to work well because it
turned out they were often tested on easy instances.



Simulated annealing

• Goal: Avoid local maxima
• Local maxima is the biggest problem with local search.

• Idea: Take a step in a direction other than the best, from time
to time.

• Try to escape local maxima by allowing some “bad” moves but
gradually decrease their size and frequency

• These steps are designed to get the solver out of a possible
local maximum

• The step size varies.

• As time passes the step size and probabilty of a non-best step
decreases.

• Simulated annealing has proven very effective in a wide range
of problems, including VLSI layout, airline scheduling, etc.



Local beam search

Idea:

• Begin with k randomly-generated states.

• Keep k states instead of 1; choose top k of all their successors

• Not the same as k searches run in parallel!

• Searches that find good states recruit other searches to join
them

Problem:
Quite often, all k states end up on same local hill

Variant: Stochastic beam search:
Choose k successors randomly, biased towards good ones

• Observe the analogy to natural selection!


