Informed Search Algorithms

Chapter 3.5-6



Outline

Informed Search and Heuristic Functions

e For informed search, we use problem-specific knowledge to
guide the search.

Topics:

e Best-first search
e A* search

e Heuristics



Recall: General Tree Search

function Tree-Search(problem) returns a solution or failure

initialize the search tree by the initial state of problem

loop do {
if there are no candidates for expansion then return failure
choose a leaf node for expansion (according to some strategy)

- remove the leaf node from the frontier

if the node satisfies the goal state then return the solution
expand the node and add the resulting nodes to the search tree

}



Informed (Heuristic) Search

e |dea: use an evaluation function for each node
e estimate of “desirability” or proximity to a goal.

e Expand the most desirable unexpanded node



Informed (Heuristic) Search

Idea: use an evaluation function for each node
e estimate of “desirability” or proximity to a goal.

Expand the most desirable unexpanded node
Most generally we have:
e Evaluation function: f(n) = g(n) + h(n)

e g(n) = cost from root to node n
e h(n) = estimated cost from node n to the goal
h(n) — heuristic function
e f(n) = estimated total cost of path through n to goal

Thus for uniform-cost search f(n) = g(n).



Greedy Best-First Search

Evaluation function f(n) = h(n)
= estimate of cost from n to the closest goal

So, g(n) =0
e |.e. the cost from the root to n is not considered.
E.g., hsip(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to
goal



Example: Romania with step costs in km

Dobreta []

Sibiu

99 Fagaras

Rimnicu Vilcea

L craiova

Pitesti

92

[] Vaslui

[] Hirsova

86

u
Eforie

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374



Greedy search example

366



253

Greedy search example

Chrad D

Qmisoar> ~ CZernd >

329 374



Greedy search example

ST R

366 176 380 193



Greedy search example




Properties of greedy search

Complete: 77



Properties of greedy search

Complete: No — can get stuck in loops,

e E.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
= Complete in finite space with repeated-state
checking

Time: 77



Properties of greedy search

Complete: No — can get stuck in loops,

e Eg., lasi —» Neamt — lasi — Neamt —
1= Complete in finite space with repeated-state
checking

Time: O(b™), but a good heuristic can give dramatic
improvement

Space: 77



Properties of greedy search

Complete: No — can get stuck in loops,

e Eg., lasi —» Neamt — lasi — Neamt —
1= Complete in finite space with repeated-state
checking

Time: O(b™), but a good heuristic can give dramatic
improvement

Space: O(b™) — keeps all nodes in memory



Properties of greedy search

Complete: No — can get stuck in loops,
e Eg., lasi —» Neamt — lasi — Neamt —
1= Complete in finite space with repeated-state
checking
Time: O(b™), but a good heuristic can give dramatic
improvement
Space: O(b™) — keeps all nodes in memory
¢ Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

e An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: 77



Properties of greedy search

Complete: No — can get stuck in loops,
e Eg., lasi —» Neamt — lasi — Neamt —
1= Complete in finite space with repeated-state
checking
Time: O(b™), but a good heuristic can give dramatic
improvement
Space: O(b™) — keeps all nodes in memory
e Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

e An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: No



A* search

Idea:

e Try to avoid expanding paths that look to be expensive

e Evaluation function f(n) = g(n) + h(n)

e g(n) = cost so far to reach n

e h(n) = estimated cost to the goal from n

e f(n) = estimated total cost of path through n to goal

e Expand the node where the cost so far, plus the estimated
cost, is minimal.

¢ Note that f(n) is a heurisitic function. It may not give the
best value.

e A good choice of a heurisitic function is crucial for good
performance.



A* search

A* search (ideally) uses an admissible heuristic
e Let h*(n) be the true (unknown) cost from n to the goal.

e A heuristic function h(n) is admissable just if:
h(n) < h*(n)
w  So h(n) never overestimates the cost.
e Also require h(n) > 0, so h(G) = 0 for any goal G.

E.g., hsLp(n) never overestimates the actual road distance

Theorem: A* search is optimal
Corollary: Uniform cost search is optimal (why?)



Example: Romania with step costs in km

Dobreta []

Sibiu

99 Fagaras

Rimnicu Vilcea

L craiova

Pitesti

92

[] Vaslui

[] Hirsova

86

u
Eforie

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374



A* search example

D
366=0+366



A* search example

Chrad >

P
393=140+253 447=118+329 449=75+374



A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193



A* search example

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253



A* search example

447=118+329

449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253



A* search example

447=118+329

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

449=75+374



Optimality of A* (standard proof)

Suppose G is a suboptimal goal.

Let n be an unexpanded node on a shortest path to an
optimal goal G:

Then:
f(G) = g(G) since h(Gp) =0
> g(G) since Gy is suboptimal
> f(
>

f(n), A* will never select G for expansion

n) since h is admissible
Since (G)



Optimality of A* (another view)

e Lemma: A* expands nodes in order of increasing f value.
e Gradually adds “f-contours” of nodes
e Cf.. breadth-first adds “layers”

e Contour i has all nodes with f = f;, where f; < fiy1




Properties of A*

Complete: 77



Properties of A*

Complete: Yes, unless there are co many nodes with £ < f(G)
Time: 77



Properties of A*

Complete: Yes, unless there are co many nodes with £ < f(G)
Time: Exponential in [relative error in h x length of soln.]

Space: 77



Complete:
Time:

Space:

Optimal:

Properties of A*

Yes, unless there are co many nodes with £ < f(G)
Exponential in [relative error in h x length of soln.]

Keeps all nodes in memory
i So exponential
?7?



Properties of A*

Complete: Yes, unless there are co many nodes with £ < f(G)
Time: Exponential in [relative error in h x length of soln.]

Space: Keeps all nodes in memory
i So exponential

Optimal: Yes

e A* expands all nodes with f(n) < C*, where
C* = cost of optimal solution

e A* expands some nodes with f(n) = C*

e A* expands no nodes with f(n) > C*



Admissible heuristics

For the 8-puzzle:



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
ha(n) = total Manhattan distance
(I.e., number of squares from desired location of each tile)



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
ha(n) = total Manhattan distance
(I.e., number of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

h(S) = 77
ho(S) = 77



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
ha(n) = total Manhattan distance
(I.e., number of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =6
ho(S) = 44+0+34+3+14+0+2+1 = 14



Dominance

e If ho(n) > hy(n) for all n (both admissible) then hy, dominates
h1, and is better for search
e Typical search costs for 8 puzzle:
d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(h2) = 113 nodes
d =24 |IDS ~ 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(hp) = 1,641 nodes

e For any admissible heuristics h,, hp,
h(n) = max(h,(n), hp(n))

is also admissible and dominates h,, hy



Determining admissable heuristic functions

Relaxed problems:

e Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem



Determining admissable heuristic functions

Relaxed problems:

e Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

e Eg.:
o If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then hy(n) gives the shortest solution
o |f the rules are relaxed so that a tile can move to any adjacent
square, then hy(n) gives the shortest solution



Determining admissable heuristic functions

Relaxed problems:

e Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem
e Eg.:
o If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then hy(n) gives the shortest solution
o |f the rules are relaxed so that a tile can move to any adjacent
square, then hy(n) gives the shortest solution

Key point:
The optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem



Relaxed problems contd.

e Well-known example: travelling salesperson problem (TSP)

e Find the shortest tour visiting all cities exactly once

e Minimum spanning tree can be computed in O(n?) and is a
lower bound on the shortest (open) tour



Summary: Heuristic functions

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost
Greedy best-first search expands lowest h

e incomplete and not always optimal
A* search expands lowest g + h

e complete and optimal

e also optimally efficient (up to tie-breaks, for forward search)
Admissible heuristics can be derived from exact solution of
relaxed problems



Local Search: Outline

We consider next local search, where we maintain a single current
state.

e lterative improvement algorithms
e Hill-climbing
o Very briefly:

e Simulated annealing
e Local beam search



Iterative improvement algorithms

Idea: In many optimization problems, the path to the goal is
irrelevant.

e The goal state itself is the solution

e E.g. the n-queens problem
So we may formulate a problem so that:

state space = set of “complete” configurations

Examples:

e find optimal configuration, e.g., TSP

o find configuration satisfying constraints, e.g., timetable

e also, e.g. propositional satisfiability (SAT)
In such cases, we can use iterative improvement algorithms

o Keep a single “current” state; try to improve it

e Uses constant space; suitable for online as well as offline search



Example: Travelling Salesperson Problem

e Start with any complete tour, perform pairwise exchanges

e Variants of this approach get within 1% of optimal very
quickly with thousands of cities.



Example: n-queens

e Goal: Put n queens on an n x n board with no two queens on
the same row, column, or diagonal.



Example: n-queens

e Goal: Put n queens on an n x n board with no two queens on
the same row, column, or diagonal.

e Move a queen to reduce number of conflicts.

o
e

h=5 h=2 h=0

e Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1,000, 000



Hill-climbing (or gradient ascent/descent)

o |dea: Take the best move from a given position
e Aka greedy local search.

e “Like climbing a mountain in thick fog with amnesia”



Hill-climbing

Function Hill-Climbing(problem) returns a state that is a local
maximum
inputs: problem a problem
local variables: current a node
neighbor a node
current <—Make-Node(Initial-State[problem])
loop do
neighbor <—a highest-valued successor of current
if Value[neighbor] < Value[current] then return State[current]
current <—neighbor
end



Hill-climbing contd.

Useful to consider state-space landscape

objective function lobal maximum

shoulder

local maximum
"flat" local maximum

state space

current
state



Hill-climbing contd.

e Hill climbing often gets stuck:

Local Maxima: l.e. local “peaks”.
E.g. 8-queens gets stuck 86% of the time.
Ridges: Essentially give a series of local maxima.
Difficult for hill-climbing to navigate
Plateaux: A plateau is a flat area in the search space.
Search degenerates to exhaustive search, or may
loop.



Hill-climbing: Strategies if stuck

e Random-restart hill climbing: Overcomes local maxima
e Trivially complete if a goal is known to exist.

e Random sideways moves: Escape from shoulders but may loop
on flat maxima

e Can also define a hill-climbing version of depth-first search.
(But then no longer a local search.)



Another Example: Propositional
Satisfiabilty

e Goal: Find a satisfying assignment for a set of clauses in CNF.

e Eg

(pVqgV=ar)A(=pVr)A(-pV—q)

is satisfied by setting: p = true, q = false, r = true.



Propositional Satisfiabilty

e Outline of an algorithm:

Function Sat(problem) returns a solution or failure
Assign truth values arbitrarily to the set of propositional variables
loop do {
if the truth assignment satisfies problem
then return the assignment
if timeout then return failure
Find / such that / gives the largest increase in clauses satisfied
Change the truth value of / to /.

}

w |f [is p then Zis -p;
if I 'is —p then [is p.



Propositional Satisfiabilty

This algorithm, when proposed in the 1990's, worked very well.

The algorithm also featured random restarts. (l.e. after a
while reassign all variable and start over).

e It handily beat all previous algorithms (notably DPLL).

Subsequent work in satisfiability has led to huge
improvements over the naive greedy algorithm.

Aside: Another thing that this work pointed out was the
importance of choice of test instances.

e DPLL (and other algorithms) appeared to work well because it
turned out they were often tested on easy instances.



Simulated annealing

Goal: Avoid local maxima
e Local maxima is the biggest problem with local search.

Idea: Take a step in a direction other than the best, from time
to time.

e Try to escape local maxima by allowing some “bad” moves but
gradually decrease their size and frequency

e These steps are designed to get the solver out of a possible
local maximum

The step size varies.

e As time passes the step size and probabilty of a non-best step
decreases.

Simulated annealing has proven very effective in a wide range
of problems, including VLSI layout, airline scheduling, etc.



Local beam search

Idea:

Begin with k randomly-generated states.

Keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!

Searches that find good states recruit other searches to join
them

Problem:
Quite often, all k states end up on same local hill

Variant: Stochastic beam search:
Choose k successors randomly, biased towards good ones

e Observe the analogy to natural selection!



