
Informed Search Algorithms

Chapter 3.5-6



Outline

Informed Search and Heuristic Functions

• For informed search, we use problem-specific knowledge to
guide the search.

Topics:

• Best-first search

• A∗ search

• Heuristics



Recall: General Tree Search

function Tree-Search(problem) returns a solution or failure
initialize the search tree by the initial state of problem
loop do {

if there are no candidates for expansion then return failure
choose a leaf node for expansion (according to some strategy)

- remove the leaf node from the frontier
if the node satisfies the goal state then return the solution
expand the node and add the resulting nodes to the search tree
}



Informed (Heuristic) Search

• Idea: use an evaluation function for each node
• estimate of “desirability” or proximity to a goal.

• Expand the most desirable unexpanded node

• Most generally we have:

• Evaluation function: f (n) = g(n) + h(n)

• g(n) = cost from root to node n
• h(n) = estimated cost from node n to the goal

h(n) – heuristic function
• f (n) = estimated total cost of path through n to goal

• Thus for uniform-cost search f (n) = g(n).
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Greedy Best-First Search

• Evaluation function f (n) = h(n)
= estimate of cost from n to the closest goal

• So, g(n) = 0

• I.e. the cost from the root to n is not considered.

• E.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy search expands the node that appears to be closest to
goal
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Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193



Greedy search example
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+ Complete in finite space with repeated-state
checking
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Properties of greedy search
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• E.g., Iasi → Neamt → Iasi → Neamt →
+ Complete in finite space with repeated-state

checking

Time: O(bm), but a good heuristic can give dramatic
improvement

Space: O(bm) – keeps all nodes in memory

• Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

• An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: No



A∗ search

Idea:

• Try to avoid expanding paths that look to be expensive

• Evaluation function f (n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost to the goal from n
• f (n) = estimated total cost of path through n to goal

• Expand the node where the cost so far, plus the estimated
cost, is minimal.

• Note that f (n) is a heurisitic function. It may not give the
best value.

• A good choice of a heurisitic function is crucial for good
performance.



A∗ search

A∗ search (ideally) uses an admissible heuristic

• Let h∗(n) be the true (unknown) cost from n to the goal.

• A heuristic function h(n) is admissable just if:
h(n) ≤ h∗(n)

+ So h(n) never overestimates the cost.

• Also require h(n) ≥ 0, so h(G ) = 0 for any goal G .

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
Corollary: Uniform cost search is optimal (why?)
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A∗ search example
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Optimality of A∗ (standard proof)

• Suppose G2 is a suboptimal goal.

• Let n be an unexpanded node on a shortest path to an
optimal goal G :

G

n

G
2

Start

• Then:

f (G2) = g(G2) since h(G2) = 0

> g(G ) since G2 is suboptimal

≥ f (n) since h is admissible

• Since f (G2) > f (n), A∗ will never select G2 for expansion



Optimality of A∗ (another view)

• Lemma: A∗ expands nodes in order of increasing f value.

• Gradually adds “f -contours” of nodes
• Cf.: breadth-first adds “layers”

• Contour i has all nodes with f = fi , where fi < fi+1
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Properties of A∗

Complete: Yes, unless there are ∞ many nodes with f ≤ f (G )

Time: Exponential in [relative error in h × length of soln.]

Space: Keeps all nodes in memory
+ So exponential

Optimal: Yes

• A∗ expands all nodes with f (n) < C ∗, where
C ∗ = cost of optimal solution

• A∗ expands some nodes with f (n) = C ∗

• A∗ expands no nodes with f (n) > C ∗



Admissible heuristics

For the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)
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Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)

2

Start State Goal State
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h1(S) = 6
h2(S) = 4+0+3+3+1+0+2+1 = 14



Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates
h1, and is better for search

• Typical search costs for 8 puzzle:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

• For any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb



Determining admissable heuristic functions

Relaxed problems:

• Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

• E.g.:
• If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent

square, then h2(n) gives the shortest solution

Key point:

The optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem
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Relaxed problems contd.

• Well-known example: travelling salesperson problem (TSP)

• Find the shortest tour visiting all cities exactly once

• Minimum spanning tree can be computed in O(n2) and is a
lower bound on the shortest (open) tour



Summary: Heuristic functions

• Heuristic functions estimate costs of shortest paths

• Good heuristics can dramatically reduce search cost

• Greedy best-first search expands lowest h
• incomplete and not always optimal

• A∗ search expands lowest g + h
• complete and optimal
• also optimally efficient (up to tie-breaks, for forward search)

• Admissible heuristics can be derived from exact solution of
relaxed problems



Local Search: Outline

We consider next local search, where we maintain a single current
state.

• Iterative improvement algorithms

• Hill-climbing

• Very briefly:
• Simulated annealing
• Local beam search



Iterative improvement algorithms

• Idea: In many optimization problems, the path to the goal is
irrelevant.

• The goal state itself is the solution
• E.g. the n-queens problem

• So we may formulate a problem so that:
state space = set of “complete” configurations

• Examples:
• find optimal configuration, e.g., TSP
• find configuration satisfying constraints, e.g., timetable
• also, e.g. propositional satisfiability (SAT)

• In such cases, we can use iterative improvement algorithms
• Keep a single “current” state; try to improve it
• Uses constant space; suitable for online as well as offline search



Example: Travelling Salesperson Problem

• Start with any complete tour, perform pairwise exchanges

• Variants of this approach get within 1% of optimal very
quickly with thousands of cities.



Example: n-queens

• Goal: Put n queens on an n × n board with no two queens on
the same row, column, or diagonal.

• Move a queen to reduce number of conflicts.

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1, 000, 000
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Hill-climbing (or gradient ascent/descent)

• Idea: Take the best move from a given position

• Aka greedy local search.

• “Like climbing a mountain in thick fog with amnesia”



Hill-climbing

Function Hill-Climbing(problem) returns a state that is a local
maximum

inputs: problem a problem
local variables: current a node

neighbor a node
current ←Make-Node(Initial-State[problem])
loop do

neighbor ←a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current ←neighbor

end



Hill-climbing contd.

Useful to consider state-space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder



Hill-climbing contd.

• Hill climbing often gets stuck:

Local Maxima: I.e. local “peaks”.
E.g. 8-queens gets stuck 86% of the time.

Ridges: Essentially give a series of local maxima.
Difficult for hill-climbing to navigate

Plateaux: A plateau is a flat area in the search space.
Search degenerates to exhaustive search, or may
loop.



Hill-climbing: Strategies if stuck

• Random-restart hill climbing: Overcomes local maxima
• Trivially complete if a goal is known to exist.

• Random sideways moves: Escape from shoulders but may loop
on flat maxima

• Can also define a hill-climbing version of depth-first search.
(But then no longer a local search.)



Another Example: Propositional
Satisfiabilty

• Goal: Find a satisfying assignment for a set of clauses in CNF.

• E.g.

(p ∨ q ∨ ¬r) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬q)

is satisfied by setting: p = true, q = false, r = true.



Propositional Satisfiabilty

• Outline of an algorithm:

Function Sat(problem) returns a solution or failure
Assign truth values arbitrarily to the set of propositional variables
loop do {

if the truth assignment satisfies problem
then return the assignment

if timeout then return failure
Find l such that l̄ gives the largest increase in clauses satisfied
Change the truth value of l to l̄ .
}

+ If l is p then l̄ is ¬p;
if l is ¬p then l̄ is p.



Propositional Satisfiabilty

• This algorithm, when proposed in the 1990’s, worked very well.

• The algorithm also featured random restarts. (I.e. after a
while reassign all variable and start over).

• It handily beat all previous algorithms (notably DPLL).

• Subsequent work in satisfiability has led to huge
improvements over the naive greedy algorithm.

• Aside: Another thing that this work pointed out was the
importance of choice of test instances.

• DPLL (and other algorithms) appeared to work well because it
turned out they were often tested on easy instances.



Simulated annealing

• Goal: Avoid local maxima
• Local maxima is the biggest problem with local search.

• Idea: Take a step in a direction other than the best, from time
to time.

• Try to escape local maxima by allowing some “bad” moves but
gradually decrease their size and frequency

• These steps are designed to get the solver out of a possible
local maximum

• The step size varies.

• As time passes the step size and probabilty of a non-best step
decreases.

• Simulated annealing has proven very effective in a wide range
of problems, including VLSI layout, airline scheduling, etc.



Local beam search

Idea:

• Begin with k randomly-generated states.

• Keep k states instead of 1; choose top k of all their successors

• Not the same as k searches run in parallel!

• Searches that find good states recruit other searches to join
them

Problem:
Quite often, all k states end up on same local hill

Variant: Stochastic beam search:
Choose k successors randomly, biased towards good ones

• Observe the analogy to natural selection!


