
Informed Search Algorithms

Chapter 3.5-6



Outline

Informed Search and Heuristic Functions

• For informed search, we use problem-specific knowledge to
guide the search.

Topics:

• Best-first search

• A∗ search

• Heuristics



Recall: General Tree Search

function Tree-Search(problem) returns a solution or failure
initialize the search tree by the initial state of problem
loop do {

if there are no candidates for expansion then return failure
choose a leaf node for expansion (according to some strategy)

- remove the leaf node from the frontier
if the node satisfies the goal state then return the solution
expand the node and add the resulting nodes to the search tree
}



Informed (Heuristic) Search

• Idea: use an evaluation function for each node
• estimate of “desirability” or proximity to a goal.

• Expand the most desirable unexpanded node

• Most generally we have:

• Evaluation function: f (n) = g(n) + h(n)

• g(n) = cost from root to node n
• h(n) = estimated cost from node n to the goal

h(n) – heuristic function
• f (n) = estimated total cost of path through n to goal

• Thus for uniform-cost search f (n) = g(n).



Informed (Heuristic) Search

• Idea: use an evaluation function for each node
• estimate of “desirability” or proximity to a goal.

• Expand the most desirable unexpanded node

• Most generally we have:

• Evaluation function: f (n) = g(n) + h(n)

• g(n) = cost from root to node n
• h(n) = estimated cost from node n to the goal

h(n) – heuristic function
• f (n) = estimated total cost of path through n to goal

• Thus for uniform-cost search f (n) = g(n).



Greedy Best-First Search

• Evaluation function f (n) = h(n)
= estimate of cost from n to the closest goal

• So, g(n) = 0

• I.e. the cost from the root to n is not considered.

• E.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy search expands the node that appears to be closest to
goal



Example: Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0

160

242

161

77

151

241

366

193

178

253

329

80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Greedy search example

Arad

366



Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374



Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193



Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0



Properties of greedy search

Complete: ??



Properties of greedy search

Complete: No – can get stuck in loops,

• E.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

+ Complete in finite space with repeated-state
checking

Time: ??



Properties of greedy search

Complete: No – can get stuck in loops,

• E.g., Iasi → Neamt → Iasi → Neamt →
+ Complete in finite space with repeated-state

checking

Time: O(bm), but a good heuristic can give dramatic
improvement

Space: ??



Properties of greedy search

Complete: No – can get stuck in loops,

• E.g., Iasi → Neamt → Iasi → Neamt →
+ Complete in finite space with repeated-state

checking

Time: O(bm), but a good heuristic can give dramatic
improvement

Space: O(bm) – keeps all nodes in memory

• Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

• An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: ??



Properties of greedy search

Complete: No – can get stuck in loops,

• E.g., Iasi → Neamt → Iasi → Neamt →
+ Complete in finite space with repeated-state

checking

Time: O(bm), but a good heuristic can give dramatic
improvement

Space: O(bm) – keeps all nodes in memory

• Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

• An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: ??



Properties of greedy search

Complete: No – can get stuck in loops,

• E.g., Iasi → Neamt → Iasi → Neamt →
+ Complete in finite space with repeated-state

checking

Time: O(bm), but a good heuristic can give dramatic
improvement

Space: O(bm) – keeps all nodes in memory

• Note that this is for an (offline) breadth-first
tree-search version of the algorithm.

• An (online) depth-first agent could perform in
constant space using via local search (later).

Optimal: No



A∗ search

Idea:

• Try to avoid expanding paths that look to be expensive

• Evaluation function f (n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost to the goal from n
• f (n) = estimated total cost of path through n to goal

• Expand the node where the cost so far, plus the estimated
cost, is minimal.

• Note that f (n) is a heurisitic function. It may not give the
best value.

• A good choice of a heurisitic function is crucial for good
performance.



A∗ search

A∗ search (ideally) uses an admissible heuristic

• Let h∗(n) be the true (unknown) cost from n to the goal.

• A heuristic function h(n) is admissable just if:
h(n) ≤ h∗(n)

+ So h(n) never overestimates the cost.

• Also require h(n) ≥ 0, so h(G ) = 0 for any goal G .

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
Corollary: Uniform cost search is optimal (why?)



Example: Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0

160

242

161

77

151

241

366

193

178

253

329

80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



A∗ search example

Arad

366=0+366



A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253



A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380



A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380



A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380



A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380



Optimality of A∗ (standard proof)

• Suppose G2 is a suboptimal goal.

• Let n be an unexpanded node on a shortest path to an
optimal goal G :

G

n

G
2

Start

• Then:

f (G2) = g(G2) since h(G2) = 0

> g(G ) since G2 is suboptimal

≥ f (n) since h is admissible

• Since f (G2) > f (n), A∗ will never select G2 for expansion



Optimality of A∗ (another view)

• Lemma: A∗ expands nodes in order of increasing f value.

• Gradually adds “f -contours” of nodes
• Cf.: breadth-first adds “layers”

• Contour i has all nodes with f = fi , where fi < fi+1

O

Z

A

T

L

M

D

C

R

F

P

G

B

U

H

E

V

I

N

380

400

420

S



Properties of A∗

Complete: ??



Properties of A∗

Complete: Yes, unless there are ∞ many nodes with f ≤ f (G )

Time: ??



Properties of A∗

Complete: Yes, unless there are ∞ many nodes with f ≤ f (G )

Time: Exponential in [relative error in h × length of soln.]

Space: ??



Properties of A∗

Complete: Yes, unless there are ∞ many nodes with f ≤ f (G )

Time: Exponential in [relative error in h × length of soln.]

Space: Keeps all nodes in memory
+ So exponential

Optimal: ??



Properties of A∗

Complete: Yes, unless there are ∞ many nodes with f ≤ f (G )

Time: Exponential in [relative error in h × length of soln.]

Space: Keeps all nodes in memory
+ So exponential

Optimal: Yes

• A∗ expands all nodes with f (n) < C ∗, where
C ∗ = cost of optimal solution

• A∗ expands some nodes with f (n) = C ∗

• A∗ expands no nodes with f (n) > C ∗



Admissible heuristics

For the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = ??
h2(S) = ??



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance
(I.e., number of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = ??
h2(S) = ??



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = ??
h2(S) = ??



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = ??
h2(S) = ??



Admissible heuristics

For the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(I.e., number of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = 6
h2(S) = 4+0+3+3+1+0+2+1 = 14



Dominance

• If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates
h1, and is better for search

• Typical search costs for 8 puzzle:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

• For any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb



Determining admissable heuristic functions

Relaxed problems:

• Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

• E.g.:
• If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent

square, then h2(n) gives the shortest solution

Key point:

The optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem



Determining admissable heuristic functions

Relaxed problems:

• Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

• E.g.:
• If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent

square, then h2(n) gives the shortest solution

Key point:

The optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem



Determining admissable heuristic functions

Relaxed problems:

• Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

• E.g.:
• If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent

square, then h2(n) gives the shortest solution

Key point:

The optimal solution cost of a relaxed problem is no greater than
the optimal solution cost of the real problem



Relaxed problems contd.

• Well-known example: travelling salesperson problem (TSP)

• Find the shortest tour visiting all cities exactly once

• Minimum spanning tree can be computed in O(n2) and is a
lower bound on the shortest (open) tour



Summary: Heuristic functions

• Heuristic functions estimate costs of shortest paths

• Good heuristics can dramatically reduce search cost

• Greedy best-first search expands lowest h
• incomplete and not always optimal

• A∗ search expands lowest g + h
• complete and optimal
• also optimally efficient (up to tie-breaks, for forward search)

• Admissible heuristics can be derived from exact solution of
relaxed problems



Local Search: Outline

We consider next local search, where we maintain a single current
state.

• Iterative improvement algorithms

• Hill-climbing

• Very briefly:
• Simulated annealing
• Local beam search



Iterative improvement algorithms

• Idea: In many optimization problems, the path to the goal is
irrelevant.

• The goal state itself is the solution
• E.g. the n-queens problem

• So we may formulate a problem so that:
state space = set of “complete” configurations

• Examples:
• find optimal configuration, e.g., TSP
• find configuration satisfying constraints, e.g., timetable
• also, e.g. propositional satisfiability (SAT)

• In such cases, we can use iterative improvement algorithms
• Keep a single “current” state; try to improve it
• Uses constant space; suitable for online as well as offline search



Example: Travelling Salesperson Problem

• Start with any complete tour, perform pairwise exchanges

• Variants of this approach get within 1% of optimal very
quickly with thousands of cities.



Example: n-queens

• Goal: Put n queens on an n × n board with no two queens on
the same row, column, or diagonal.

• Move a queen to reduce number of conflicts.

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1, 000, 000



Example: n-queens

• Goal: Put n queens on an n × n board with no two queens on
the same row, column, or diagonal.

• Move a queen to reduce number of conflicts.

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n = 1, 000, 000



Hill-climbing (or gradient ascent/descent)

• Idea: Take the best move from a given position

• Aka greedy local search.

• “Like climbing a mountain in thick fog with amnesia”



Hill-climbing

Function Hill-Climbing(problem) returns a state that is a local
maximum

inputs: problem a problem
local variables: current a node

neighbor a node
current ←Make-Node(Initial-State[problem])
loop do

neighbor ←a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current ←neighbor

end



Hill-climbing contd.

Useful to consider state-space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder



Hill-climbing contd.

• Hill climbing often gets stuck:

Local Maxima: I.e. local “peaks”.
E.g. 8-queens gets stuck 86% of the time.

Ridges: Essentially give a series of local maxima.
Difficult for hill-climbing to navigate

Plateaux: A plateau is a flat area in the search space.
Search degenerates to exhaustive search, or may
loop.



Hill-climbing: Strategies if stuck

• Random-restart hill climbing: Overcomes local maxima
• Trivially complete if a goal is known to exist.

• Random sideways moves: Escape from shoulders but may loop
on flat maxima

• Can also define a hill-climbing version of depth-first search.
(But then no longer a local search.)



Another Example: Propositional
Satisfiabilty

• Goal: Find a satisfying assignment for a set of clauses in CNF.

• E.g.

(p ∨ q ∨ ¬r) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬q)

is satisfied by setting: p = true, q = false, r = true.



Propositional Satisfiabilty

• Outline of an algorithm:

Function Sat(problem) returns a solution or failure
Assign truth values arbitrarily to the set of propositional variables
loop do {

if the truth assignment satisfies problem
then return the assignment

if timeout then return failure
Find l such that l̄ gives the largest increase in clauses satisfied
Change the truth value of l to l̄ .
}

+ If l is p then l̄ is ¬p;
if l is ¬p then l̄ is p.



Propositional Satisfiabilty

• This algorithm, when proposed in the 1990’s, worked very well.

• The algorithm also featured random restarts. (I.e. after a
while reassign all variable and start over).

• It handily beat all previous algorithms (notably DPLL).

• Subsequent work in satisfiability has led to huge
improvements over the naive greedy algorithm.

• Aside: Another thing that this work pointed out was the
importance of choice of test instances.

• DPLL (and other algorithms) appeared to work well because it
turned out they were often tested on easy instances.



Simulated annealing

• Goal: Avoid local maxima
• Local maxima is the biggest problem with local search.

• Idea: Take a step in a direction other than the best, from time
to time.

• Try to escape local maxima by allowing some “bad” moves but
gradually decrease their size and frequency

• These steps are designed to get the solver out of a possible
local maximum

• The step size varies.

• As time passes the step size and probabilty of a non-best step
decreases.

• Simulated annealing has proven very effective in a wide range
of problems, including VLSI layout, airline scheduling, etc.



Local beam search

Idea:

• Begin with k randomly-generated states.

• Keep k states instead of 1; choose top k of all their successors

• Not the same as k searches run in parallel!

• Searches that find good states recruit other searches to join
them

Problem:
Quite often, all k states end up on same local hill

Variant: Stochastic beam search:
Choose k successors randomly, biased towards good ones

• Observe the analogy to natural selection!


