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Problem-Solving Agents

In the simplest case, an agent will:

• formulate a goal and a problem;

• search for a sequence of actions that solves the problem;

• then execute the actions.

When done it may formulate another goal and start over.

• In this case the performance measure is simply whether or not
the goal is attained.

A problem-solving agent uses an atomic representation.



Problem-solving agents

Restricted form of general agent:

Function Simple-Problem-Solving-Agent(percept) returns an action
static seq an action sequence, initially empty

state some description of the current world state
goal a goal, initially null
problem a problem formulation

state ←Update-State(state,percept)
if seq is empty then

goal ←Formulate-Goal(state)
problem ←Formulate-Problem(state,goal)
seq ←Search(problem)
if seq = fail then return null

action ←First(seq,state); seq ←Rest(seq,state)
return action



Problem-solving agents

• This is offline problem solving, executed “eyes closed.”
• Requires complete knpowledge about the domain

• Online problem solving involves acting without necessarily
having complete knowledge.



Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal

• Be in Bucharest

• Formulate problem

• states: various cities
• actions: drive between cities

• Find solution

• Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Problem Formulation: State-Space Search

A problem is defined by five items:

1. The set of states, including the initial state e.g. “at Arad”

2. Actions available to the agent E.g. Vacuum: Suck, Left, . . .

3. Transition model: What actions do; defines a graph.

• I.e. RESULT (s, a) = state resulting from doing a in s.
e.g. RESULT (In(Arad),Go(Zerind)) = In(Zerind)

1.–3. define the state space

4. Goal test. Can be explicit, e.g. x = “at Bucharest”
implicit, e.g. NoDirt(x)

5. Path cost (additive)
e.g. sum of distances, number of actions , etc.
c(x , a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions from initial state to a goal state.



Selecting a State Space

• The real world is highly complex and contains lots of
irrelevant information.
⇒ state space must be abstracted for problem solving

• (Abstract) state will have irrelevant detail removed.

• Similarly, actions must be at the right level of astraction

• e.g., “Go(Zerind)” omits things like starting the car, steering,
etc.

• (Abstract) solution =
set of real paths that are solutions in the real world



Example: Vacuum World State Space
Graph
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Example: Vacuum World State Space
Graph
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transition model: actions as expected, except moving left (right) in
the right (left) square is a NoOp

goal test: no dirt

path cost: 1 per action (0 for NoOp)



Example: The 8-puzzle
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Example: The 8-puzzle
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states: locations of tiles

actions: move blank left, right, up, down

transition model: given a state and action give the resulting state

goal test: = goal state (given)

path cost: 1 per move

[Aside: optimal solution of n-Puzzle family is NP-hard]



Example: Airline Travel

states: Include locations (airports), current time.

• Also perhaps fares, domestic/international, and
other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as
seat class, departure time, etc.

transition model: The state resulting from taking a flight, including
destination and arrival time.

goal test: At the final destination?

path cost: Depends on total cost, time, waiting time, seat type,
type of plane, etc.



Others Examples

How about:

• Crosswords?

• n-Queens?

• Propositional Satisfiability?

• Coffee and Mail Delivering Robot?

• Others?



Tree Search Algorithms

Basic idea:

• Offline exploration of the state space

• Generate successors of already-explored states
(a.k.a. expanding states)

⇒ The set of nodes available for expansion is the fringe or frontier.

• Key issue: Which node should be expanded next?



Tree search example
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Implementation: General Tree Search

In outline:

Function Tree-Search(problem) returns a solution or failure
Initialize the search tree by the initial state of problem
loop do {

if there are no candidates for expansion then return failure
choose a leaf node for expansion (according to some strategy)

- remove the leaf node from the frontier
if the node satisfies the goal state then return the solution
expand the node and add the resulting nodes to the search tree
}

Aside: Strategy will most often be implicit in the resulting function.



Implementation: States vs. Nodes

It is important to distinguish the state space and the search tree.

• A state represents a configuration in the problem space.

• A node is part of a search tree.
• has attributes parent, children, depth, path cost g(x).

States do not have parents, children, depth, or path cost (though
one state may be reachable from another).
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State Node
depth = 6

g = 6

state

parent, action

An Expand function creates new nodes, filling in the various fields
and using a SuccessorFn of the problem to create the
corresponding states.



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)
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Uninformed search strategies

• Uninformed strategies use only the information available in
the problem definition

• I.e. except for the goal state, there is no notion of one state
being “better” than another.

• Examples:

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search
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Properties of breadth-first search

Complete: Yes (if b is finite)

Time: 1 + b + b2 + b3 + . . .+ bd = O(bd)
I.e., exp. in d

Space: O(bd) (keeps every node in memory)

Optimal: Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec.
So 24hrs = 8640GB.



Uniform-Cost Search

• Expand the least-cost unexpanded node

• Implementation
fringe = queue ordered by path cost, lowest first

• Equivalent to breadth-first if step costs all equal

• For the travel-in-Romania example, expand the node on the
fringe for that city closest in distance to the city at the root
(Arad).



Uniform-Cost Search

Complete: Yes, if step cost ≥ ε, for ε some small positive
constant.

• So NoOps of cost 0 can be a problem.

Time: O(bdC
∗/εe), where C ∗ is the cost of the optimal

solution

Space: O(bdC
∗/εe)

• Time and space complexity can be worse than
bd .

Optimal: Yes

• Nodes expanded in increasing order of g(n)
where g(n) is the cost to get to node n.



Depth-First Search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front
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Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time: O(bm): terrible if m is much larger than d

• But if solutions are dense, may be much faster
than breadth-first

Space: O(bm), i.e., linear space!

Optimal: No



Depth-Limited Search

Depth-limited search = depth-first search with depth limit l ,

• i.e., nodes at depth l have no successors

Recursive implementation:

The implementation simply calls a “helper” function (described on
the next slide):

Function Depth-Limited-Search(problem,limit)
returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),
problem,limit)



Depth-Limited Search

Recursive implementation:

Function Recursive-DLS(node,problem,limit) returns soln/fail/cutoff
cutoff-occurred? ←false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do

result ←Recursive-DLS(successor,problem,limit-1)
if result = cutoff then cutoff-occurred? ←true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

• Note: second edition has a bug in the recursive call!



Iterative Deepening Search

Function Iterative-Deepening-Search(problem) returns a solution
inputs: problem a problem
for depth ← 0 to ∞ do

result ←Depth-Limited-Search(problem,depth)
if result 6= cutoff then return result

end
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Properties of iterative deepening search

Complete: Yes

Time: (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space: O(bd)

Optimal: Yes, if step cost = 1



Properties of iterative deepening search

• Comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+400+3, 000+20, 000+100, 000 = 123, 450

N(BFS) = 10+100+1, 000+10, 000+100, 000

+999, 990 = 111, 100

• For a large search space with unknown depth of solution, IDS
is usually best.

• For BFS, we have the following ratio of IDS to BFS:

b Ratio
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5 1.5

10 1.2

• Can be modified to explore uniform-cost tree
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Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes Yes
if l ≥ d

Time bd+1 bdC
∗/εe bm bl bd

Space bd+1 bdC
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

∗: If b is finite.



Repeated states

• Failure to detect repeated states can turn a linear problem
into an exponential one!

A

B

C

D

A

BB

CCCC

• If we detect repeated states, then our search algorithm
amounts to searching a graph rather than a tree.

• Keep a list of encountered nodes, called the closed list.



Graph search

Function Graph-Search(problem,fringe) returns a solution, or failure
closed ←an empty set
fringe ←Insert(Make-Node(Initial-State[problem]),fringe)
loop do

if fringe is empty then return failure
node ←Remove-Front(fringe)
if Goal-Test(problem,State[node]) then return node
if State[node] is not in closed then

add State[node] to closed
fringe ←InsertAll(Expand(node,problem),fringe)

end



Summary

• Problem formulation usually requires abstracting from
real-world details to define a state space that can feasibly be
explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

• Graph search can be exponentially more efficient than tree
search


