
Problem Solving and Search

Chapter 3



Outline

• Problem-solving agents

• Problem formulation

• Example problems

• Basic search algorithms



Problem-Solving Agents

In the simplest case, an agent will:

• formulate a goal and a problem;

• search for a sequence of actions that solves the problem;

• then execute the actions.

When done it may formulate another goal and start over.

• In this case the performance measure is simply whether or not
the goal is attained.

A problem-solving agent uses an atomic representation.



Problem-solving agents

Restricted form of general agent:

Function Simple-Problem-Solving-Agent(percept) returns an action
static seq an action sequence, initially empty

state some description of the current world state
goal a goal, initially null
problem a problem formulation

state ←Update-State(state,percept)
if seq is empty then

goal ←Formulate-Goal(state)
problem ←Formulate-Problem(state,goal)
seq ←Search(problem)
if seq = fail then return null

action ←First(seq,state); seq ←Rest(seq,state)
return action



Problem-solving agents

• This is offline problem solving, executed “eyes closed.”
• Requires complete knpowledge about the domain

• Online problem solving involves acting without necessarily
having complete knowledge.



Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal

• Be in Bucharest

• Formulate problem

• states: various cities
• actions: drive between cities

• Find solution

• Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86



Problem Formulation: State-Space Search

A problem is defined by five items:

1. The set of states, including the initial state e.g. “at Arad”

2. Actions available to the agent E.g. Vacuum: Suck, Left, . . .

3. Transition model: What actions do; defines a graph.

• I.e. RESULT (s, a) = state resulting from doing a in s.
e.g. RESULT (In(Arad),Go(Zerind)) = In(Zerind)

1.–3. define the state space

4. Goal test. Can be explicit, e.g. x = “at Bucharest”
implicit, e.g. NoDirt(x)

5. Path cost (additive)
e.g. sum of distances, number of actions , etc.
c(x , a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions from initial state to a goal state.



Selecting a State Space

• The real world is highly complex and contains lots of
irrelevant information.
⇒ state space must be abstracted for problem solving

• (Abstract) state will have irrelevant detail removed.

• Similarly, actions must be at the right level of astraction

• e.g., “Go(Zerind)” omits things like starting the car, steering,
etc.

• (Abstract) solution =
set of real paths that are solutions in the real world



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states:

actions:

transition model:

goal test:

path cost:



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations (so 2× 22 possible states)

actions:

transition model:

goal test:

path cost:



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations

actions: Left, Right, Suck, NoOp

transition model:

goal test:

path cost:



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations

actions: Left, Right, Suck, NoOp

transition model: actions as expected, except moving left (right) in
the right (left) square is a NoOp

goal test:

path cost:



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations

actions: Left, Right, Suck, NoOp

transition model: actions as expected, except moving left (right) in
the right (left) square is a NoOp

goal test: no dirt

path cost:



Example: Vacuum World State Space
Graph

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states: dirt and robot locations

actions: Left, Right, Suck, NoOp

transition model: actions as expected, except moving left (right) in
the right (left) square is a NoOp

goal test: no dirt

path cost: 1 per action (0 for NoOp)



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states:

actions:

transition model:

goal test:

path cost:



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: (integer) locations of tiles.
+ Ignore intermediate positions

actions:

transition model:

goal test:

path cost:



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: locations of tiles

actions: move blank left, right, up, down

transition model:

goal test:

path cost:



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: locations of tiles

actions: move blank left, right, up, down

transition model: given a state and action give the resulting state

goal test:

path cost:



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: locations of tiles

actions: move blank left, right, up, down

transition model: given a state and action give the resulting state

goal test: = goal state (given)

path cost:



Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states: locations of tiles

actions: move blank left, right, up, down

transition model: given a state and action give the resulting state

goal test: = goal state (given)

path cost: 1 per move

[Aside: optimal solution of n-Puzzle family is NP-hard]



Example: Airline Travel

states: Include locations (airports), current time.

• Also perhaps fares, domestic/international, and
other “historical aspects”.

initial state: Given by a user’s query

actions: Flight from current location with attributes such as
seat class, departure time, etc.

transition model: The state resulting from taking a flight, including
destination and arrival time.

goal test: At the final destination?

path cost: Depends on total cost, time, waiting time, seat type,
type of plane, etc.



Others Examples

How about:

• Crosswords?

• n-Queens?

• Propositional Satisfiability?

• Coffee and Mail Delivering Robot?

• Others?



Tree Search Algorithms

Basic idea:

• Offline exploration of the state space

• Generate successors of already-explored states
(a.k.a. expanding states)

⇒ The set of nodes available for expansion is the fringe or frontier.

• Key issue: Which node should be expanded next?



Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad



Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara



Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara



Implementation: General Tree Search

In outline:

Function Tree-Search(problem) returns a solution or failure
Initialize the search tree by the initial state of problem
loop do {

if there are no candidates for expansion then return failure
choose a leaf node for expansion (according to some strategy)

- remove the leaf node from the frontier
if the node satisfies the goal state then return the solution
expand the node and add the resulting nodes to the search tree
}

Aside: Strategy will most often be implicit in the resulting function.



Implementation: States vs. Nodes

It is important to distinguish the state space and the search tree.

• A state represents a configuration in the problem space.

• A node is part of a search tree.
• has attributes parent, children, depth, path cost g(x).

States do not have parents, children, depth, or path cost (though
one state may be reachable from another).

1

23

45

6

7

81

23

45

6

7

8

State Node
depth = 6

g = 6

state

parent, action

An Expand function creates new nodes, filling in the various fields
and using a SuccessorFn of the problem to create the
corresponding states.



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?

time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded

space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory

optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Search strategies

• A strategy is defined by picking the order of node expansion

• The fringe (also frontier) is a list of nodes that have been
generated but not yet expanded.

• Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

• Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)



Uninformed search strategies

• Uninformed strategies use only the information available in
the problem definition

• I.e. except for the goal state, there is no notion of one state
being “better” than another.

• Examples:

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search



Uninformed search strategies

• Uninformed strategies use only the information available in
the problem definition

• I.e. except for the goal state, there is no notion of one state
being “better” than another.

• Examples:

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search



Breadth-first search

Expand the shallowest unexpanded node

Implementation
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G



Breadth-first search

Expand the shallowest unexpanded node

Implementation
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G



Breadth-first search

Expand the shallowest unexpanded node

Implementation
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G



Breadth-first search

Expand the shallowest unexpanded node

Implementation
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G



Properties of breadth-first search

Complete: ??



Properties of breadth-first search

Complete: Yes (if b is finite)

Time: ??



Properties of breadth-first search

Complete: Yes (if b is finite)

Time: 1 + b + b2 + b3 + . . .+ bd = O(bd)
I.e., exponential in d

Space: ??



Properties of breadth-first search

Complete: Yes (if b is finite)

Time: 1 + b + b2 + b3 + . . .+ bd = O(bd)
I.e., exp. in d

Space: O(bd) (keeps every node in memory)

Optimal: ??



Properties of breadth-first search

Complete: Yes (if b is finite)

Time: 1 + b + b2 + b3 + . . .+ bd = O(bd)
I.e., exp. in d

Space: O(bd) (keeps every node in memory)

Optimal: Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec.
So 24hrs = 8640GB.



Uniform-Cost Search

• Expand the least-cost unexpanded node

• Implementation
fringe = queue ordered by path cost, lowest first

• Equivalent to breadth-first if step costs all equal

• For the travel-in-Romania example, expand the node on the
fringe for that city closest in distance to the city at the root
(Arad).



Uniform-Cost Search

Complete: Yes, if step cost ≥ ε, for ε some small positive
constant.

• So NoOps of cost 0 can be a problem.

Time: O(bdC
∗/εe), where C ∗ is the cost of the optimal

solution

Space: O(bdC
∗/εe)

• Time and space complexity can be worse than
bd .

Optimal: Yes

• Nodes expanded in increasing order of g(n)
where g(n) is the cost to get to node n.



Depth-First Search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Depth-first search

Expand the deepest unexpanded node

Implementation
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O



Properties of depth-first search

Complete: ??



Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time: ??



Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time: O(bm): terrible if m is much larger than d

• But if solutions are dense, may be much faster
than breadth-first

Space: ??



Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time: O(bm): terrible if m is much larger than d

• But if solutions are dense, may be much faster
than breadth-first

Space: O(bm), i.e., linear space!

Optimal: ??



Properties of depth-first search

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time: O(bm): terrible if m is much larger than d

• But if solutions are dense, may be much faster
than breadth-first

Space: O(bm), i.e., linear space!

Optimal: No



Depth-Limited Search

Depth-limited search = depth-first search with depth limit l ,

• i.e., nodes at depth l have no successors

Recursive implementation:

The implementation simply calls a “helper” function (described on
the next slide):

Function Depth-Limited-Search(problem,limit)
returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),
problem,limit)



Depth-Limited Search

Recursive implementation:

Function Recursive-DLS(node,problem,limit) returns soln/fail/cutoff
cutoff-occurred? ←false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do

result ←Recursive-DLS(successor,problem,limit-1)
if result = cutoff then cutoff-occurred? ←true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

• Note: second edition has a bug in the recursive call!



Iterative Deepening Search

Function Iterative-Deepening-Search(problem) returns a solution
inputs: problem a problem
for depth ← 0 to ∞ do

result ←Depth-Limited-Search(problem,depth)
if result 6= cutoff then return result

end



Iterative deepening search l = 0

Limit = 0 A A



Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C



Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G



Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O



Properties of iterative deepening search

Complete: ??



Properties of iterative deepening search

Complete: Yes

Time: ??



Properties of iterative deepening search

Complete: Yes

Time: (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space: ??



Properties of iterative deepening search

Complete: Yes

Time: (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space: O(bd)

Optimal:



Properties of iterative deepening search

Complete: Yes

Time: (d + 1)b0 + db1 + (d − 1)b2 + . . .+ bd = O(bd)

Space: O(bd)

Optimal: Yes, if step cost = 1



Properties of iterative deepening search

• Comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+400+3, 000+20, 000+100, 000 = 123, 450

N(BFS) = 10+100+1, 000+10, 000+100, 000

+999, 990 = 111, 100

• For a large search space with unknown depth of solution, IDS
is usually best.

• For BFS, we have the following ratio of IDS to BFS:

b Ratio

2 3
3 2
5 1.5

10 1.2

• Can be modified to explore uniform-cost tree



Properties of iterative deepening search

• Comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+400+3, 000+20, 000+100, 000 = 123, 450

N(BFS) = 10+100+1, 000+10, 000+100, 000

+999, 990 = 111, 100

• For a large search space with unknown depth of solution, IDS
is usually best.

• For BFS, we have the following ratio of IDS to BFS:

b Ratio

2 3
3 2
5 1.5

10 1.2

• Can be modified to explore uniform-cost tree



Properties of iterative deepening search

• Comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+400+3, 000+20, 000+100, 000 = 123, 450

N(BFS) = 10+100+1, 000+10, 000+100, 000

+999, 990 = 111, 100

• For a large search space with unknown depth of solution, IDS
is usually best.

• For BFS, we have the following ratio of IDS to BFS:

b Ratio

2 3
3 2
5 1.5

10 1.2

• Can be modified to explore uniform-cost tree



Properties of iterative deepening search

• Comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+400+3, 000+20, 000+100, 000 = 123, 450

N(BFS) = 10+100+1, 000+10, 000+100, 000

+999, 990 = 111, 100

• For a large search space with unknown depth of solution, IDS
is usually best.

• For BFS, we have the following ratio of IDS to BFS:

b Ratio

2 3
3 2
5 1.5

10 1.2

• Can be modified to explore uniform-cost tree



Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes Yes
if l ≥ d

Time bd+1 bdC
∗/εe bm bl bd

Space bd+1 bdC
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

∗: If b is finite.



Repeated states

• Failure to detect repeated states can turn a linear problem
into an exponential one!

A

B

C

D

A

BB

CCCC

• If we detect repeated states, then our search algorithm
amounts to searching a graph rather than a tree.

• Keep a list of encountered nodes, called the closed list.



Graph search

Function Graph-Search(problem,fringe) returns a solution, or failure
closed ←an empty set
fringe ←Insert(Make-Node(Initial-State[problem]),fringe)
loop do

if fringe is empty then return failure
node ←Remove-Front(fringe)
if Goal-Test(problem,State[node]) then return node
if State[node] is not in closed then

add State[node] to closed
fringe ←InsertAll(Expand(node,problem),fringe)

end



Summary

• Problem formulation usually requires abstracting from
real-world details to define a state space that can feasibly be
explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

• Graph search can be exponentially more efficient than tree
search


