14.1 (Thomas Nakagawa) Suppose we have a bag of three biased
coins a, b and ¢, which have probability of coming up heads of 20%,
60% and 80% respectively. We draw one of the three coins randomly
and flip it three times to get outcomes X7, X2 and X3G.

Draw a Bayesian network corresponding to this setup and define
the relevant CPTs.

Calculate which coin is most likely to have been drawn if the flips
come up HHT.



14.1
a. With the random variable C denoting which coin {a, b, ¢} we drew, the network has C
at the root and X, X, and X as children.
The CPT for C is:
C|P(C)
a|l/3
b |1/3
c|1/3
The CPT for X; given C are the same, and equal to:
C
a
b

X, P(C)
heads |0.2
heads | 0.6
¢ |heads|0.8

b. The coin most likely to have been drawn from the bag given this sequence is the value
of C with greatest posterior probability P(C|2 heads, 1 tails). Now,
P(C|2 heads, 1 tails) = P(2 heads, 1 tails|C)P(C)/P(2 heads, 1 tails)
o P(2 heads, 1 tails/C)P(C)
x P(2 heads, 1 tails|C)
where in the second line we observe that the constant of proportionality 1/P(2 heads, 1 tails)
is independent of C, and in the last we observe that P(C) is also independent of the

value of C since it is, by hypothesis, equal to 1/3.
From the Bayesian network we can see that X;, X7, and X3 are conditionally inde-

pendent given C, so for example
P(X, = tails, X, = heads, X3 = heads|C = a)
= P(X, = tails|C = a)P(X; = heads|C = a) P(X3 = heads|C = a)
= 0.8 x0.2 x0.2=0.032

Note that since the CPTs for each coin are the same, we would get the same probability
above for any ordering of 2 heads and 1 tails. Since there are three such orderings, we
have

P(2heads, 1tails|C = a) = 3 x 0.032 = 0.096.

Similar calculations to the above find that
P(2heads, 1tails|C = b) = 0.432
P(2heads, 1tails|C = ¢) = 0.384

showing that coin b is most likely to have been drawn.
Alternatively, one could directly compute the value of P(C2 heads, 1 tails).



14.8 (Lijun (Julie) Zhu) Consider the network for car diagnosis.
Extend the network with boolean variables for IcyWeather and StarterMotor.
Give reasonable CPTs for all the nodes.

How many independent numbers do your network’s tables contain? In contrast,
how many independent numbers are contained in the joint probability distribution
for eight boolean variables, assuming no known conditional independencies?

The conditional distribution for Starts could be described as a noisy-AND
distribution. Define this family in general and relate it to the noisy-OR distribution.
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148 Adding variables to an existing net can be done in two ways. Formally speaking,
one should insert the variables into the variable ordering and rerun the network construction
process from the point where the first new variable appears. Informally speaking, one never
really builds a network by a strict ordering. Instead, one asks what variables are direct causes
or influences on what other ones, and builds local parent/child graphs that way. It is usually
easy to identify where in such a structure the new variable goes, but one must be very careful
to check for possible induced dependencies downstream.

a. IcyWeather is not caused by any of the car-related variables, so needs no parents.
It directly affects the battery and the starter motor. Starter Motor is an additional
precondition for Starts. The new network is shown in Figure S14.1.

b. Reasonable probabilities may vary a lot depending on the kind of car and perhaps the
personal experience of the assessor. The following values indicate the general order of
magnitude and relative values that make sense:

* A reasonable prior for IcyWeather might be 0.05 (perhaps depending on location
and season).

* P(Battery|IcyW eather) = 0.95, P(Battery|-~IcyW eather) = 0.997.

» P(Starter Motor|IcyW eather) = 0.98, P(Battery —~IcyWeather) = 0.999.

* P(Radio|Battery) = 0.9999, P(Radio —~Battery) = 0.05.

* P(Ignition|Battery) = 0.998, P(Ignition ~Battery) = 0.01.

* P(Gas) = 0.995.

* P(Starts|Ignition, Starter Motor, Gas) = 0.9999, other entries 0.0.

* P(Moves|Starts) = 0.998.

¢. With 8 Boolean variables, the joint has 2% — 1 = 255 independent entries.

d. Given the topology shown in Figure S14.1, the total number of independent CPT entries
is 142424242+1+8+2= 20.

Figure S14.1 Car network amended to include JeyWeather and
StarterMotorWorking (SMW).

e. The CPT for Starts describes a set of nearly necessary conditions that are together

almost sufficient. That is, all the entries are nearly zero except for the entry where all
the conditions are true. That entry will be not quite 1 (because there is always some
other possible fault that we didn’t think of), but as we add more conditions it gets closer
to 1. If we add a Leak node as an extra parent, then the probability is exactly 1 when
all parents are true. We can relate noisy-AND to noisy-OR using de Morgan’s rule:
AA B = ~(~AV ~B). That is, noisy-AND is the same as noisy-OR except that the
polarities of the parent and child variables are reversed. In the noisy-OR case, we have
P(Y =truelz),....zm) =1- [ @
{i:z; = true}
where g; is the probability that the presence of the ith parent fails to cause the child to
be true. In the noisy-AND case, we can write
P(Y =truelzy,...,.z)= [[ =
{izz, = false}
where r; is the probability that the absence of the ith parent fails to cause the child to
be false (e.g., it is magically bypassed by some other mechanism).



14.10 (Farzin Ahmed) The probit distribution describes the probability
distribution for a Boolean child given a single continuous parent.

How might the definition be extended to cover multiple continuous
parents?

How might it be extended to handle a multi-valued child variable?
consider both cases where the child’s values are ordered (e.g.
selecting a gear while driving) and cases where they are unordered
(as in selecting bus/train/car to get to work). Hint: consider ways to
divide the possible values into two sets, to mimic a Boolean child.



14.10

a. With multiple continuous parents, we must find a way to map the parent value vector to
a single threshold value. The simplest way to do this is to take a linear combination of

the parent values.

b. For ordered values y; < ¥ < -+ < y4, we assume some unobserved continuous
dependent variable y* that is normally distributed conditioned on the parent variables,
and define cutpoints ¢; such that Y =y; iff ¢;_; < y® < ¢;. The probability of this
event is given by subtracting the cumulative distributions at the adjacent cutpoints.

The unordered case is not obviously meaningful if we insist that the relationship
between parents and child be mediated by a single, real-valued, normally distributed
variable.



14.15 (Robin Qumsieh)

Perform variable elimination for the query P(Burglary | JohnCalls =
true, MaryCalls = true).

Count the number of arithmetic operations performed, and compare
to the number performed by the enumeration algorithm.

Suppose a network has the form of a chain: A sequence of Boolean
variables X1..XN where Parents(Xi) = {X(i-1)}. What is the
complexity of computing P(X1 I XN = true) using enumeration?
Variable elimination?



¢. To compute P(X,|X,, = true) using enumeration, we have to evaluate two complete
binary trees (one for each value of X), each of depth n — 2, so the total work is O(2").

14.15 This question definitely helps students get a solid feel for variable elimination. Stu- Using variable elimination, the factors never grow beyond two variables. For example,

dents may need some help with the last part if they are to do it properly. the first step is )
P(X,| Xy = true
a.
P(Blj,m) = aP(Xi)... Z P(zn-2/2n-3) 2 P(Zn-1|2n-2) P(X = true|zn_)
= OP(B)EP(C)ZP(0|b,€)P(JIG)P(m]a) — aP(Xl) z P(l'n-2|zn-3) z fx.._,(In-l,xn-z)fx,.(-"—'n-n)
= aP(B) Y P(e) [.9 X .7 (:gi :31) + .05 01 ( po ;;9)\ = aP(X)... ¥ P(Zn-2lZn-3)fx—x, (¥n-2)
= aP(B) Y P(e) ( 508525 183055 ) The last line is isomorphic to the problem with r — 1 variables instead of n; the work
. 59223 0011295 done on the first step is a constant independent of n, hence (by induction on n, if you
598525 59223 want to be formal) the total work is O(n).
= aP\B) [“m" (183055) + 08 x (.0011295 )] d. Here we can perform an induction on the number of nodes in the polytree. The base

001 59224259 case is trivial. For the inductive hypothesis, assume that any polytree with n nodes can
=°(.999)x(.m1493351) be evaluated in time proportional to the size of the polytree (i.c., the sum of the CPT
sizes). Now, consider a polytree with n + 1 nodes. Any node ordering consistent with

_a('mgfgggg) the topology will eliminate first some leaf node from this polytree. To eliminate any

~ (.284,.716)

b. Including the normalization step, there are 7 additions, 16 multiplications, and 2 divi-

sions. The en ion algorithm has two extra multiplications. leaf node, we have to do work proportional to the size of its CPT. Then, because the

network is a polytree, we are left with independent subproblems, one for each parent.
Each subproblem takes total work proportional to the sum of its CPT sizes, so the total
work for n 4+ 1 nodes is proportional to the sum of CPT sizes.



