
 CMPT 300

 Page 1/6

Project 4: System Calls1
1. Preparation

To complete this assignment, it is vital that you have carefully completed and understood the content in

the following guides which are posted on the course website:

 Custom Kernel Guide: how to download, build, and run a custom Linux kernel.

 Guide to Linux Sys-Calls: how to create and test a simple Linux system call (sys-call).

In this assignment, you'll be coding in both user space and kernel space. Since it takes a couple of minutes

to recompile and re-run a new kernel, you should code carefully!

You can work in a group with up to two students. You can also work alone, but you get no extra credits

for this.

2. Array Statistics Sys-Call

First, you'll add a new system call that computes some basic statistics on an array of data. In practice, it

makes little sense to have this as a sys-call; however, it allows us to become familiar with accessing

memory between user and kernel space before accessing other kernel data structures.

Requirements

In the kernel's cs300/ folder, create a file named array_stats.h with the contents:

Create a new sys-call named array_stats (function sys_array_stats()):

 Implement it in your kernel's cmpt00/ folder in a file name array_stats.c. Use
#include "array_stats.h"

 Make it sys-call number 341 (in syscall_64.tbl).

 The sys-call's prototype is:

1 Created/updated by Brian Fraser and Mohamed Hefeeda.

// Define the array_stats struct for the array_stats sys-call.
#ifndef _ARRAY_STATS_H_
#define _ARRAY_STATS_H_

struct array_stats{
 long min;
 long max;
 long sum;
};

#endif

asmlinkage long sys_array_stats(

 struct array_stats *stats,

 long data[],

 long size);

 CMPT 300

 Page 2/6

o stats: A pointer to one array_stats structure allocated by the user-space application.

Structure will be written to by the sys-call to store the minimum, maximum, and sum of all

values in the array pointed to by data.

o data: An array of long int values passed in by the user-space application.

o size: The number of elements in data. Must be > 0.

The array_stats sys-call must:

 Set the three fields of the stats structure based on the data array. The values in data are

signed (positive or negative). Nothing special need be done if the sum of all the data

overflows/underflows a long.

 Return 0 when successful.

 Returns -EINVAL if size <= 0.

 Returns -EFAULT if any problems access stats or data.

 You must not allocate or use a large amount of kernel memory to copy the entire input data

array into.

Hints

 Use printk() calls in the kernel to print out debug information. You may leave some of these

printk() messages in your solution as these messages are not technically displayed by the

user-space application. The messages you leave in should be helpful such as showing

parameters values or errors it caught; they should not be of the sort “running line 17”, or “past

loop 1”. It is usually useful to printk() the parameters you are given, and printk() any

error conditions you handle.

 Correct memory access is the hardest part of writing this sys-call.

o The kernel cannot trust anything it is given by a user-level application. Each pointer, for

example, could be: a) perfectly fine, b) null, c) outside of the user program's memory

space, or d) pointing to too small an area of memory. Since the kernel can read/write to

any part of memory, it would be disastrous for the kernel to trust a user-level pointer.

o Each read you do using a pointer passed in as input (a user-level pointer) should be done

via the copy_from_user() macro. This macro safely copies data from a user-level pointer

to a kernel-level variable: if there's a problem reading or writing the memory, it stops and

returns non-zero without crashing the kernel.

 First use this macro to copy values into a local variables (which are in the kernel's

memory space). Then, use these local variables in your program. See the Linux

Kernel Development (ch5, p75) for more on the macro.

 Hint: Create a local variable of type long inside your sys-call function. Use

copy_from_user() to copy one value at a time from the user's data array into this

variable. If a copy fails (copy_from_user() returns non-zero) then have your sys-

call end immediately and return -EFAULT.

 Hint: Double check that you only ever access the data array using

copy_from_user()!

 You can directly access size because it is passed by value so there is no possible

problem access memory.

http://troy.lib.sfu.ca/record=b5628381~S1a
http://troy.lib.sfu.ca/record=b5628381~S1a

 CMPT 300

 Page 3/6

o Likewise, when writing to a user-level pointer, use copy_to_user() which checks the

pointer is valid (non-null), inside the user-program's memory space, and is writable (vs

read-only).

 Hint: Create a local variable of type struct array_stats inside your sys-call

function. Compute the correct values in this struct first, then at the very end use

copy_to_use() to copy the contents to user's pointer.

 The kernel is compiled with C90; you must declare your variables at the start of a block (such

as your function) vs in the middle of your function.

 A user-space test program is provided to extensively test your system call. Your sys-call

implementation should pass all of these tests. It is likely that your code will be marked based

on passing these (and perhaps other) tests. You may want to run the tests one at a time by

commenting out calls in main().

3. Process Ancestor Sys-Call

In this section, you'll implement a sys-call which returns information about the current process, plus its

ancestors (its parent process, it's grandparent process, and so on).

Requirements

 In the kernel's cmpt300/ folder, create a file named process_ancestors.h with the contents:

 Create new sys-call named process_ancestors (function sys_process_ancestors()):

o Implement it in your kernel's cmpt300/ folder in a file name process_ancestors.c. Use
#include "process_ancestors.h"

o Make its sys-call number 342 (in syscall_64.tbl).

o The sys-call's prototype is:

// Structure to hold values returned by process_ancestors sys-call
#ifndef _PROCESS_ANCESTORS_H
#define _PROCESS_ANCESTORS_H

#define ANCESTOR_NAME_LEN 16
struct process_info {
 long pid; /* Process ID */
 char name[ANCESTOR_NAME_LEN]; /* Program name of process */
 long state; /* Current process state */
 long uid; /* User ID of process owner */
 long nvcsw; /* # voluntary context switches */
 long nivcsw; /* # involuntary context switches */
 long num_children; /* # children process has */
 long num_siblings; /* # sibling process has */
};

#endif

 CMPT 300

 Page 4/6

 info_array[]: An array of process_info structs that will be written to by the kernel

as it fills in information from the current process on up through its ancestors.

 size: The number of structs in info_array[]. This is the maximum number of structs

that the kernel will write into the array (starting with the current process as the first

entry and working up from there). The size may be larger or smaller than the actual

number of ancestors of the current process: larger means some entries are left unused

(see num_filled); smaller means information about some processes not written into the

array.

 num_filled: A pointer to a long. To this location the kernel will store the number of

structs (in info_array[]) which are written by the kernel. May be less than size if the

number of ancestors for the current process is less than size.

 The process_ancestors sys-call must:

o Starting at the current process, fill the elements in info_array[] with the correct values.

 Ordering: the current process's information goes into info_array[0]; the parent of the

current process into info_array[1]; grandparent into info_array[2]; and so on.

 Extra structs in info_array[] are left unmodified.

o Return 0 when successful.

o Returns -EINVAL if size <= 0.

o Returns -EFAULT if any problems access info_array or num_filled.

o You must not allocate or use a large amount of kernel memory to copy/store large arrays

into.

 You must also create a user-space test program which calls your sys-call and exercises its

functionality. You must do at least some testing on to show it works correctly, and that it

generates correct error values in at least a few of the failure conditions (bad pointers, ...).

o Hint: Use asserts in your test code.

o We will have an extensive test suit to exercise your solution!

Hints

 You will make extensive use of the kernel's task_struct structures: each process has a

task_struct. You can find the task_struct for the current process using the macro

current.

o For example, the PID for the currently running process on this CPU can be found with:
long pid = current->pid;

 Basic algorithm sketch:

1) Start from current process and fill in fields for info_array[0].

2) Move to parent of this process (current->parent), and copy its info into info_array[1].

3) Repeat until the parent of the process you are working on is itself (cur_task->parent ==

cur_task).

asmlinkage long sys_process_ancestors(
 struct process_info info_array[],
 long size,
 long *num_filled)

 CMPT 300

 Page 5/6

o The first task spawned by Linux is its own parent, so hence its parent pointer points to

itself. This process has PID 0 and is the idle task (named swapper).

o I recommend that you first get the info on the current process and print it to the screen

(printk) to ensure you have the correct values. Then work on getting the data into the

process_info structs and handling ancestors.

 Hints on the fields of process_info:

o Quite a few of the values can be pulled directly out of the task_struct structure. Look

for fields with a matching name.

 task_struct is defined in include/linux/sched.h (in your kernel folder). To

include this in your sys-call implementation use: #include <linux/sched.h>

 Here is a good online site to navigate the kernel source.

o The name of the program for a process is stored in the task_struct.comm field.

o The user ID for the owner of a process can be found inside the process's credentials (cred

field). Inside cred, you want to look at the uid field.

o For counting the number of children and siblings, you'll want to start with the following

linked list nodes: task_struct.children, and task_struct.sibling.

 These are nodes in circular linked lists. Linux uses the struct list_head for a node

because in a circular linked list, each node can be thought of as the head of the list.

 You can follow the next field of a node in the list (a list_head) to get the node

(list_head) of the next element in the list.

 It is a circular linked list, so you'll have to determine how to count the number of

elements (think of how you know when to stop following next pointers). Hint: Think of

addresses.

 Note that Linux has some clever (complicated) ways of taking a node in the list (which

just has a next and prev field pointing to other list_head structures) and accessing

the full structure that contains the node. For example, given a list_head struct that is

in a task_struct, the kernel includes macros to give you the full task_struct!

However, you have (mercifully) been spared having to do this. If you are interested, for

fun try printing out the PID of each of the sibling processes.

 Safe memory access is critical. Apply all the suggestions from the previous sys-call for safe

memory access.

 You can use the ps command in your QEMU virtual machine to display information on

running processes and verify the sys-call output. See ps's man page for how to select the

information it displays.

4. Deliverables

In CourSys, create a group for your submission. Even if you worked alone, you need to be in a group (of

1 in this case) to submit. Submit the following to CourSys:

1. A patch of your Linux kernel folder for the files you changed.

Patch must be done in accordance with the Kernel Patch guide posted on the course website.

Must patch cleanly (either using Git or patch).

http://lxr.free-electrons.com/source/include/linux/sched.h#L1274

 CMPT 300

 Page 6/6

2. An archive file (zip or tar.gz) of your kernel code:

- cmpt300/ folder

- /makefile, syscall_64.tbl

3. An archive file (zip or tar.gz) of your user mode folder containing your test code for the sys-

calls. Must include a makefile with a target “transfer” to copy the statically linked executables

to QEMU.

May include the provided array_statistics test code.

 Please remember that all submissions will automatically be compared for unexplainable

similarities.

 Marking will be done on a 64-bit system. If you did your development on a 32-bit system,

your code must still compile and run perfectly on a 64 bit system. Specifically, double check

that you have:

1. Created the necessary rows in arch/x86/syscall/syscall_64.tbl

These will allow us to call your functions, but the numbers must match exactly those numbers

listed in this assignment. (In 32-bit the numbers differ from 64bit).

2. Your user-level code uses the correct 64-bit sys-call numbers.

Hint: Make your user-level code check the GCC defined constant _LP64 and automatically pick

the correct sys-call number:

#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>

#if _LP64 == 1
#define _CS300_TEST_ 340
#else
#define _CS300_TEST_ 390
#endif

int main(int argc, char *argv[])
{
 printf("\nDiving to kernel level\n\n");
 int result = syscall(_CS300_TEST_ , 12345);
 printf("\nRising to user level w/ result = %d\n\n", result);

 return 0;
}

