
Project 2: Shell with History CMPT 300

 1/6

Project 2: Shell with History1

1. Overview

In this project, you will develop a simple UNIX shell. The shell accepts user commands and then executes

each command in a separate process. The shell provides the user a prompt at which the next command is

entered. One technique for implementing a shell interface is to have the parent process first read what

the user enters on the command line and then create a separate child process that performs the command.

Unless otherwise specified, the parent process waits for the child to exit before continuing. However,

UNIX shells typically also allow the child process to run in the background – or concurrently – as well

by specifying the ampersand (&) at the end of the command. The separate child process is created using

the fork() system call and the user’s command is executed by using one of the system calls in the

exec() family.

2. Simple Shell

A C program that provides the basic operation of a command line shell is given below. The main()

function first calls read_command(), which reads a full command from the user and tokenizes it into

separate words (arguments). These tokens can be passed directly to execvp() in the child process.

If the user enters an “&” as the final argument, read_command() will set the in_background parameter

to true (and remove the “&” from the array of tokens). For example, if the user enters “ls –l” at the '>'

prompt, tokens[0] will contain “ls”, tokens[1] will contain (or point to) the string “-l”, and tokens[2]

will be a NULL pointer indicating the end of the arguments. (Each of these strings is a NULL terminated C-

style string). Note that the character array buff will contain the text that the user entered; however, it

will not be one single NULL terminated string but rather a bunch of NULL terminated strings, each of which

is a token pointed to by the tokens array.

This project is organized into three parts: (1) creating the child process and executing the command in

the child, (2) adding some internal commands, and (3) modifying the shell to allow a history feature.

1Created by Mohamed Hefeeda, modified by Brian Fraser.

Project 2: Shell with History CMPT 300

 2/6

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define COMMAND_LENGTH 1024
#define NUM_TOKENS (COMMAND_LENGTH / 2 + 1)

/**
 * Read a command from the keyboard into the buffer 'buff' and tokenize it
 * such that 'tokens[i]' points into 'buff' to the i'th token in the command.
 * buff: Buffer allocated by the calling code. Must be at least
 * COMMAND_LENGTH bytes long.
 * tokens[]: Array of character pointers which point into 'buff'. Must be at
 * least NUM_TOKENS long. Will strip out up to one final '&' token.
 * 'tokens' will be NULL terminated.
 * in_background: pointer to a boolean variable. Set to true if user entered
 * an & as their last token; otherwise set to false.
 */
void read_command(char *buff, char *tokens[], _Bool *in_background)
{
 … Full code available on course website (in shell.c)…
}

/**
 * Main and Execute Commands
 */
int main(int argc, char* argv[])
{
 char input_buffer[COMMAND_LENGTH];
 char *tokens[NUM_TOKENS];
 while (true) {

 // Get command
 // Use write because we need to use read()/write() to work with
 // signals, and they are incompatible with printf().
 write(STDOUT_FILENO, "> ", strlen("> "));
 _Bool in_background = false;
 read_command(input_buffer, tokens, &in_background);

 /**
 * Steps For Basic Shell:
 * 1. Fork a child process
 * 2. Child process invokes execvp() using results in token array.
 * 3. If in_background is false, parent waits for
 * child to finish. Otherwise, parent loops back to
 * read_command() again immediately.
 */
 }
 return 0;
}

Project 2: Shell with History CMPT 300

 3/6

3. Creating Child Process

First, modify main() so that upon returning form read_command(), a child is forked and executes the

command specified by the user. As noted above, read_command() loads the contents of the tokens array

with the command specified by the user. This tokens array will be passed to the execvp() function,

which has the following interface:

 execvp(char *command, char * params[]);

where command represents the command to be performed and params stores the parameters to this

command. For this project, the execvp() function should be invoked as
 execvp(tokens[0], tokens);

Be sure to check the value of in_background to determine if the parent process is to wait for the child

exit or not. Hint: use waitpid() vs wait() because you want to wait on the child you just launched. If

you only use wait() and have previously launched any child processes in the background that have

terminated, wait() will immediately return having “consumed” the previous zombie process, and your

current process incorrectly acts as though it was run in the background. Note that we won't be testing

with interactive command-line processes run in the background (think vim), or test using signals while

running a command in the background.

If execvp() returns an error (see man execvp) then display an error message.

Note that using printf() may not work well for this assignment and that you should use write() instead

(look up more with man write). The issue is that we need to use the read() function for getting the

user's command and use write() when working with signals (later). And, it turns out that printf() and

read()/write() don't always work well together.

Therefore, when printing to the screen, use the write() command. For common things, such as

displaying a simple string, or writing a number to the screen, you may want to make your own functions

which make it easier. (You can convert an integer to a string using sprintf()).

3.1 Waiting Aside

When a process in Linux finishes, it still exists in the kernel with some status information until the parent

process waits on that child. These un-waited-on terminated child processes are known zombies. For this

assignment, you won't lose any marks if you don't correctly wait() on zombie processes from background

tasks; however, it's a good habit to correctly cleanup the zombies on your system!

Above it is suggested that you use waitpid() to wait on the correct child. However, this will leave any

background process as zombie processes (having exited, the parent process will never wait() on the

child). You can correct this by occasionally trying a non-blocking wait to handle any zombie child

processes. We can pass the WNOHANG option to waitpid() to be non-blocking, and setting the PID to -1

will wait on any child process. For example, have the following code run after every user command is

processed:

4. Internal Commands

Internal commands are commands that the shell itself implement, as opposed to a separate program that

is executed. Implement the commands listed below. Note that for these you need not fork a new process

 // Cleanup any previously exited background child processes
 // (The zombies)
 while (waitpid(-1, NULL, WNOHANG) > 0)
 ; // do nothing.

Project 2: Shell with History CMPT 300

 4/6

as they can be handled directly in the parent process.

 exit

Exit the program. Does not matter how many arguments the user enters; they are all ignored.

 pwd

Display the current working directory. Use getcwd() function. Run man getcwd for more.

Ignore any extra arguments passed by the user.

 cd

Change the current working directory. Use chdir() function. Pass chdir() the first argument

the user enters (it will accept absolute and relative paths). Ignore any extra arguments passed by

the user.

 If chdir() returns an error, display an error message.

 You do not need to support ~ for the home folder, or changing to the home folder with “cd”.

If the user presses enter on an empty line, do nothing (much like a normal Linux terminal).

Plus change the prompt to include the current working directory. For example, if in the /home/brian

folder, the prompt should be:
 /home/brian>

5. Creating a History Feature

The next task is to modify your shell to provide a history feature that allows the user access up to the ten

most recently entered commands. Start numbering the user's commands at 1 and increment for each

command entered. These numbers will grow past 10. For example, if the user has entered 35 commands,

then the most recent ten will be numbered 26 through 35. This history feature will be implementing using

a few different techniques.

5.1 History Commands

First implement an internal command “history” which displays the ten most recent commands executed

in the shell. If there are not yet ten commands entered, display all the commands entered so far (<10).

 Display the commands in ascending order (sorted by its command number).

 Display the command number on the left, and the command (with all its arguments) on the right.

 Hint: Print a tab between the two outputs to have them line up easily.

 If the command is run in the background using &, it must be added to the history with the &.

 A sample output of the history command is shown below:

/home/brian> history
3 cd /proc
4 cat uptime
5 cd /usr
6 ls
7 man pthread_create
8 cd /home/brian
9 ls
10 ls -la
11 echo Hello World from my shell!
12 history
/home/brian>

Project 2: Shell with History CMPT 300

 5/6

Next, implement the ! commands which allows users to run commands directly from the history list:

 Command “!n” runs command number n, such as “!11” will re-run the eleventh command

entered this session. In the above example, this will re-run the echo command.

 If n is not a number, or an invalid value (not one of the previous ten command numbers) then

display an error.

 You may treat any command starting with ! as a history command. For example, if the user

types “!hi”, just display an error. (Note that atoi(“hi”) returns 0, which should naturally be

an invalid command number, and hence may generate a reasonable error message without

extra work).

 Command “!!” runs the previous command.

 If there is no previous command, display an error message.

 When running a command using “!n” or “!!”, display the command from history to the screen so

the user can see what command they are actually running.

 Neither the “!!” nor the “!n” commands are to be added to the history list themselves, but rather

the command being executed from the history must be added. Here is an example.

Suggestions

 Implement history as a global two dimensional array:

#define HISTORY_DEPTH 10

char history[HISTORY_DEPTH][COMMAND_LENGTH];

 Rather than have all your code directly access the history array, write some functions which

encapsulate all access to this array. Suggested functions would include: add command to history,

retrieve command (copy into buffer, likely), printing the last ten commands to the screen.

5.2 Signals

Change your shell program to display the list of history commands when the user presses ctrl-c (which

is the SIGINT signal). See course website for a guide on using signals.

 In main(), register a custom signal handler for the SIGINT signal.

/home/brian> echo test
test
/home/brian> !!
echo test
test
/home/brian> history
6 ls
7 man pthread_create
8 cd /home/brian
9 ls
10 ls -la
11 echo Hello World from my shell!
12 history
13 echo test
14 echo test
15 history
/home/brian>

Project 2: Shell with History CMPT 300

 6/6

 Have the signal handler display the previous ten user commands (same as history command).

 Then re-display the command-prompt before returning.

 Note that when another child process is running, ctrl-c will likely cancel/kill that process.

Therefore displaying the history with ctrl-c will only be tested when there are no child processes

running.

Suggestions

 To implement this, you will also need change read_command() a little bit.

 The signal handler will do nothing but displaying the history commands and then display the

prompt again. The signal will interrupt the read() system call and discard all data already read

for this command.

 When read() fails, it returns -1. You can check why read fails: if it returns -1 and the

environment variable errno equals EINTR it means that it was interrupted by a signal. If the

return value is -1 and errno is any other value, it means read just failed and the program should

exit.

 To correctly check read()'s return value you can change the code that you now have:

to the following:

6. Notes

You do not need to support either > or | from the terminal. These are features of the normal Linux

terminal that we are not implementing.

Your code must not have any memory leaks or memory access errors. Your shell must free all memory

before it exits. However, your child processes may exit without freeing all their memory (if exec() fails

then the child process will have a copy of all the memory that the parent holds; freeing this memory

would be unnecessarily time consuming for the OS). Therefore, you may ignore any Valgrind messages

when a child process terminates to the effect of memory being held when program terminated.

7. Submission

Submit an archive (zip or tar.gz) to CourSys of your code and a make file. We will build your code

using your makefile, and the run it using the command: ./shell

You may use more than one .c/.h file in your solution if you like. If so, your makefile must correctly

build your project.

Please remember that all submissions will automatically be compared for unexplainable similarities.

 if (length < 0){

 perror("Unable to read command. Terminating.\n");

 exit(-1); /* terminate with error */

 }

 if ((length < 0) && (errno !=EINTR)){

 perror("Unable to read command. Terminating.\n");

 exit(-1); /* terminate with error */

 }

	1. Overview
	2. Simple Shell
	3. Creating Child Process
	3.1 Waiting Aside

	4. Internal Commands
	5. Creating a History Feature
	5.1 History Commands
	5.2 Signals

	6. Notes
	7. Submission

