Project 1: Review Unix Programming Tools and Basics of the C Language

This is a very important project! Investing time in it will greatly help you in later projects. Please
do the following reading in order:

1. Unix Programming Tools for information on how to use the gcc compiler, make tool, and
gdb debugger.

2. Essential C or any similar document/book. Pay careful attention to pointers and memory
management in C.

Now, do the following programming problems using C. All code MUST run on a Linux
machine. We will grade your code on a Linux machine. You should create a directory for your
project, such as ~/cmpt300/pri1/ and put all files related to this project in it.

1. String Manipulation Functions [45 points]

In this problem, you will develop a few string manipulation functions similar to the standard C
string functions. You are not allowed to use any standard string functions (e.g., strcpy, strlen,
etc) in your code (however, your functions may call each other as necessary). Download the file
mystring.tar.gz to ~/cmpt300/prj1/ After the download, issue the command:

$ tar xvfz mystring.tar.gz

which creates the directory ~/cmpt300/prj1/mystring. In that directory, you will find the
following files:

e mystring.h -- header file containing the prototypes for the functions that you will
develop.

e mystring.c -- source file in which you will do your coding.

e test mystring.c -- Simple test file to help you testing your code.

e Makefile -- this file is used by the Unix command make to compile your source code and
build the executable files.

Start by issuing the command make to ensure that you got everything ready to start coding. The
code should compile without a problem and you should find an executable file named

test mystring. Try it by issuing the command . /test mystring. Of course, the tests there
will fail. Now, start coding the functions in mystring.c one at a time and modify

test mystring.c to add more tests.

https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/unixProgrammingTools/view
https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/essentialC/view
https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/mystring/download

In general, you can assume that all pointers passed into your code will be valid, and that there
will be enough space allocated for any copy operations to succeed. (We must assume this
because in C we have no way of checking if there is enough space.) You may #include any
extra .h files as required (such as stdlib.h).

2. Linked List Operations [55 points]

The linked list is a simple, yet powerful, data structure that appears-- in one way or another--in
almost all reasonable-size programs that you will encounter in your career. In this problem, you
will implement several functions that create and manipulate a linked list. A node in the list is
defined as:

struct nodeStruct {

int item;

struct nodeStruct *next;
}s

You must implement at least the following functions:

/*

* Allocate memory for a node of type struct nodeStruct and
initialize

* it with the value item. Return a pointer to the new node.
*/

struct nodeStruct* List createNode (int item);

/*
* Insert node at the head of the list.
*/
void List insertHead (struct nodeStruct **headRef, struct
nodeStruct *node);

/*
* Insert node after the tail of the list.
*/
void List insertTail (struct nodeStruct **headRef, struct
nodeStruct *node) ;

/*

* Count number of nodes in the list.

* Return 0 if the list is empty, i.e., head == NULL
*/

int List countNodes (struct nodeStruct *head);

/*

* Return the first node holding the value item, return NULL if
none found

*/

struct nodeStruct* List findNode (struct nodeStruct *head, int
item) ;

/*

* Delete node from the list and free memory allocated to it.

* This function assumes that node has been properly set to a valid
node

* in the list. For example, the client code may have found it by
calling

* List findNode(). If the list contains only one node, the head of
the list

* should be set to NULL.

*/
void List deleteNode (struct nodeStruct **headRef, struct
nodeStruct *node) ;

/*
* Sort the list in ascending order based on the item field.
* Any sorting algorithm is fine.

*/

void List sort (struct nodeStruct **headRef);

Each function (other than sort) should not alter the item value of nodes in the linked list. For
example, to insert a new node at the head of the list, a new node must be linked in at the front,
rather than all the item values shifted. (This does not apply to the sort function, which may alter
item values.)

Note that struct nodestruct **headref In the functions above enables you to modify the
memory location referred to by the variable headRef (e.g., you can code: *headrRef = node).
This is important to handle boundary conditions such as inserting the first node in the list or
deleting the last node in the list. In such cases, you would need to change the head of the list
itself, it is why we pass pointer to the pointer. You can find more information on linked lists in
this document.

Here is how you should structure your source code:
Create a directory called ~/cmpt300/prj1/list under which create the following files:

1. 1ist.h--contains the definition of struct nodestruct and the function prototypes. No
head Of tail pointer; they are just in the application (such as main.c).

2. list.c -- contains the implementation of the above functions.

3. test list.c --to test your code, contains the main () function. Here is a simple
test_list.c to start you off.

4. Makefile -- you can start with the Makefile of the previous problem and modify it.

https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/linkedLists/view
https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/linkedLists/view
https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/test_list/download
https://courses.cs.sfu.ca/2017fa-cmpt-300-d1/pages/test_list/download

Test your code very carefully. Your code will be run through the instructor's tests which don't
respond well to seg-faults!

In general, you can assume that all pointers passed into your code will be valid.

What to Submit and How

Make sure that your files are organized as follows:
o prjl/mystring -- everything related to the mystring part
o prjl/list -- everything related the linked list part
o Change to each of your folders and issue the command make clean. This will remove all
object files as well as all output and temporary files
o Change to your prjl folder: s cd ~/cmpt300/prj1
e Then, issue:
$ tar cvf prjl.tar *
which creates a tar ball (i.e., a single file) that contains the contents of the folder.
e Compress your file using gzip:
$ gzip prjl.tar
e Submit via CourSys by the deadline posted there.

https://courses.cs.sfu.ca/

	1. String Manipulation Functions [45 points]
	2. Linked List Operations [55 points]
	What to Submit and How

