
Guide to Using Signals
UNIX system uses signals to notify a process that a particular event has occurred. Signals may be
either synchronous or asynchronous, depending upon the source and the reason for the event being
signalled. Once a signal has been generated by the occurrence of a certain event (e.g., division by zero,
illegal memory access, user entering <Control><C>, etc.), the signal is delivered to a process where it
must be handled. A process receiving a signal may handle it by one of the following techniques:

ignoring the signal

using the default signal handler, or

providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure struct sigaction and then
passing this structure to the sigaction() function. Signals are defined in the include file
/usr/include/sys/signal.h. For example, the signal SIGINT represents the signal for terminating a
program with the control sequence <Control><C>. The default signal handler for SIGINT is to
terminate the program. Alternatively, a program may choose to set up its own signal-handling function
by setting the sa_handler field in struct sigaction to the name of the function which will handle
the signal and then invoking the sigaction() function, passing it (1) the signal we are setting up a
handler for, and (2) a pointer to struct sigaction.

Below, is a C program that uses the function handle_SIGINT() for handling the SIGINT signal. This
function prints a message and then invokes the exit() function to terminate the program. (We must
use the write() function for performing output rather than the more common printf() as the former
is known as being signal-safe, indicating it can be called from inside a signal-handling function; such
guarantees cannot be made of printf().) This program will run in the while (1) loop until the user
enters the sequence <Control><C>. When this occurs, the signal-handling function handle_SIGINT()
is invoked.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>

#define BUFFER_SIZE 50
static char buffer[BUFFER_SIZE];

/* Signal handler function */
void handle_SIGINT()
{

write(STDOUT_FILENO, buffer, strlen(buffer));
exit(0);

}

int main(int argc, char *argv[])
{

/* set up the signal handler */
struct sigaction handler;
handler.sa_handler = handle_SIGINT;
handler.sa_flags = 0;
sigemptyset(&handler.sa_mask);
sigaction(SIGINT, &handler, NULL);

strcpy(buffer,"I caught a Ctrl-C!\n");

printf("Program now waiting for Ctrl-C.\n");
while (1)

;

return 0;
}

The signal-handling function should be declared above main() (unless using prototypes) and because
control can be transferred to this function at any point, no parameters may be passed to it this function.
Therefore, any data that it must access in your program must be declared globally, i.e. at the top of the
source file before your function declarations.

	Guide to Using Signals

