Chapter-6: Bipolar Junction Transistors (BJTs)

Table 6.1	BJT Modes of Operation	n
Mode	EBJ	CBJ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

Operation of the npn Transistor in the Active Mode:

- Two external voltage sources (shown as batteries) are used to establish the required bias conditions for active-mode operation.
- The voltage V_{BE} causes the *p*-type base to be higher in potential than the *n*-type emitter, thus forward biasing the emitter–base junction.
- The collector-base voltage V_{CB} causes the *n*-type collector to be at a higher potential than the *p*-type base, thus reverse biasing the collector-base junction.
- The forward bias on the emitter–base junction will cause current to flow across this junction.
 - Current will consist of two components:
 - a) Electrons injected from the emitter into the base, and
 - b) Holes injected from the base into the emitter.

The Emitter Current:

Since the current that enters a transistor must leave it, one can conclude that the in "npn" emitter current i_E is equal to the sum of the collector current i_C and the base current i_B ; that is, $i_E = i_C + i_B$

Thyristors:

 T_2

 T_1

- o Are 4-layer silicon semiconductors.
- Use low input power to control large load currents.
- Are very common in industrial power & motor control.
- o Are inherently nonlinear devices.
- Have two states: ON and OFF.

Silicon Controlled Rectifiers

Quadrant 3 operation occurs when the gate and MT2 are negative with respect to MT1 Quadrant 4 operation occurs when the gate is positive and MT2 is negative with respect to MT1.

Equivalent-Circuit Models: T-Model:

Pi- Model:

- The model above is essentially a voltage-controlled current source. However, here diode *DB* conducts the base current and thus its current scale factor is $\frac{I_S}{\beta}$, resulting in the *relationship*: $i_B = \left(\frac{I_S}{\beta}\right) e^{\frac{v_{BE}}{v_T}}$
- By simply expressing the collector current as βi_B we obtain the current-controlled current-source model shown in figure on right.
- From this latter model we observe that if the transistor is used as a two-port network with the input port between B and E and the output port between C and E (i.e., with E as the common terminal), then the current gain observed is equal to β. Thus β is called the common-emitter current gain.

6.1 Consider an *npn* transistor with $v_{BE} = 0.7$ V at $i_C = 1$ mA. Find v_{BE} at $i_C = 0.1$ mA and 10 mA. **Solution:**

6.3 Measurement of an *npn* BJT in a particular circuit shows the base current to be 14.46 μ A, the emitter current to be 1.460 mA, and the base–emitter voltage to be 0.7 V. For these conditions, calculate α , β , and I_s .

Solution:

Example:

A transistor has a β =100 and exhibits a $V_{BE} = 0.7 V$ at an i_C of 1mA. Design a circuit such that the collector current is 2mA and a +5V appears at the collector.

Solution: