
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Storage and Indexing

Chapter 8

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

System Issues: How to Build a
DBMS

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Discussed so far

New topic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Data on External Storage
  Disks: Can retrieve random page at fixed cost

  But reading several consecutive pages is much cheaper than
reading them in random order

  Tapes: Can read pages only in sequence
  Cheaper than disks; used for archival storage

  File organization: Method of arranging a file of records
on external storage.
  Record id (rid) is sufficient to physically locate record
  Indexes are data structures that allow us to find the record ids

of records with given values in index search key fields

  Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index
layers make calls to the buffer manager.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Alternative File Organizations

Many alternatives exist, each ideal for some
situations, and not so good in others:
  Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.
  Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.
  Indexes: Data structures to organize records via

trees or hashing.
•  Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
•  Updates are much faster than in sorted files.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Indexes

 An index on a file speeds up selections on the
search key fields for the index.
  Any subset of the fields of a relation can be the

search key for an index on the relation (e.g., age or
colour).

  Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).

 An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

  Example of Index: Essentials of Game Theory

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Alternatives for Data Entry k* in Index

  Three alternatives:
  Data record with key value k
  <k, rid of data record with search key value k>
  <k, list of rids of data records with search key k>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Alternatives for Data Entries (Contd.)

 Alternative 1:
  If this is used, index structure is a file organization

for data records (instead of a Heap file or sorted
file).

  At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

  If data records are very large, # of pages
containing data entries is high. Implies size of
auxiliary information in the index is also large,
typically.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Example of Alternative 1

8 blue rectangle 6
4 blue square 5
2 blue round 4

Red
Red

Red

colour

3
2

1

Loca-
tion

8 rectangle
4 square

2 round

holes shape

6 data entries,
sorted by colour

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Example of Alternative 2

blue 6
blue 5
blue 4

Red
Red

Red

colour

3
2

1

Loca-
tion

6 data entries,
sorted by colour

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Example of Alternative 3

Loca-
tions

colour

1, 2, 3 Red

4,5,6 Blue

2 data entries,
variable lenth

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Alternatives for Data Entries (Contd.)

 Alternatives 2 and 3:
  Data entries typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, is much
smaller than with Alternative 1.)

  Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Index Classification

  Primary vs. secondary: If search key contains primary
key, then called primary index.
  Unique index: Search key uniquely identifies record.

  Clustered vs. unclustered: If order of data records is the
same as, or `close to’, order of data entries, then called
clustered index.
  Alternative 1 implies clustered; in practice, clustered also

implies Alternative 1 (since sorted files are rare).
  A file can be clustered on at most one search key.
  Cost of retrieving data records through index varies greatly

based on whether index is clustered or not!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Clustered vs. Unclustered Index
  Suppose that Alternative (2) is used for data entries,

and that the data records are stored in a Heap file.
  To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
  Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Hash-Based Indexes
 Good for equality selections.

• Index is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.

• Hashing function h: h(r) = bucket in which
record r belongs. h looks at the search key fields
of r.

  If Alternative (1) is used, the buckets contain
the data records; otherwise, they contain <key,
rid> or <key, rid-list> pairs.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

B+ Tree Indexes

  Leaf pages contain data entries, and are chained (prev & next)
  Non-leaf pages contain index entries; they direct searches:

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Leaf

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Example B+ Tree

  Find 28*? 29*? All > 17* and < 30*
  Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
  And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
  B: The number of data pages
  R: Number of records per page
  D: (Average) time to read or write disk page
  Average-case analysis; based on several simplistic

assumptions.

  Good enough to show the overall trends!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Comparing File Organizations

  Heap files (random order; insert at eof)
  Sorted files, sorted on <age, sal>
  Clustered B+ tree file, Alternative (1), search

key <age, sal>
  Heap file with unclustered B + tree index on

search key <age, sal>
  Heap file with unclustered hash index on

search key <age, sal>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Operations to Compare
  Scan: Fetch all records from disk
  Equality search (e.g., “age = 30”)
  Range selection (e.g., “age > 30”)
  Insert a record
  Delete a record

B = # data
pages

R =
#records/
page

D = disk
page I/O
time

C =
process
single
record

H = apply
Hash
function

F = index
tree fan-
out

Typical
value

15 mlsec 100
nanosec

100
nanosec

100

Parameters of the Analysis

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Assumptions in Our Analysis
  Heap Files:

  Equality selection on key; exactly one match.
  Sorted Files:

  Files compacted after deletions.
  Clustered files: pages typically 67% full.
⇒  Total number pages needed = 1.5 B.

  Indexes:
  Alt (2), (3): data entry size = 10% size of record
  Hash: No overflow buckets.

•  80% page occupancy.
⇒  Index size = 1.25 B data size.
⇒  #data entries/page = 10 (0.8R) = 8R.

  Tree: 67% page occupancy of index pages (this is typical).

⇒ #leaf pages = (1.5 B) 0.1 = 0.15 B.
⇒  #data entries/page = 10 (0.67R) = 6.7R.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Scanning Cost
 Heap file: B(D + RC).

  for each page (B)
  Read the page (D)
  For each record (R), process the record (C).

  Sorted File: B(D + RC).
  Have to go through all pages.

 Clustered File: 1.5B (D+RC).
  Pages only 67% full.

 Unclustered Tree Index: >BR(D+C). Bad!
•  for each record (BR)
•  retrieve page and find record (D + C).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Exercise for Group Work
1.  Estimate how long an equality search takes in
(i) a heap file (ii) a sorted file (iii) a hash file, hashed
on the search key, with at most one record matching

the search key (i.e., the search is on a key field).

2. Estimate how long an insertion takes in
(i) a heap file (ii) a sorted file (iii) a hash file.

B = # data
pages

R =
#records/
page

D = disk
page I/O
time

C =
process
single
record

H = apply
Hash
function

F = index
tree fan-
out

Typical
value

15 msec 100
nanosec

100
nanosec

100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Cost of Operations

  Several assumptions underlie these (rough) estimates!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Index Illustrations

  Hash Insertion: 4 D I/Os: 2 to read/write data
page, 2 to read/write index entry.

  Hash Index Illustration.
  Clustered Tree Index Illustration.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

I/O Cost of Operations

  Several assumptions underlie these (rough) estimates!
 Order of magnitude results.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Create Indexes in SQL-Server

  SQL Server supports many options for
creating indices (more than we can cover).

  Sample Syntax:
use aworks;
create index IX_Product_Color
on SalesLT.Product (Color);
 More Examples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Understanding the Workload

  For each query in the workload:
  Which relations does it access?
  Which attributes are retrieved?
  Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

  For each update in the workload:
  Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?
  The type of update (INSERT/DELETE/UPDATE), and the

attributes that are affected.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Choice of Indexes

 What indexes should we create?
  Which relations should have indexes? What field(s)

should be the search key? Should we build several
indexes?

  For each index, what kind of an index should it
be?
  Clustered? Hash/tree?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Choice of Indexes (Contd.)

 One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.
  Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!
  For now, we discuss simple 1-table queries.

  Before creating an index, must also consider the
impact on updates in the workload!
  Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Index Selection Guidelines
  Attributes in WHERE clause are candidates for index keys.

  Exact match condition suggests hash index.
  Range query suggests tree index.

•  Clustering is especially useful for range queries; can also help on
equality queries if there are many duplicates.

  Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
  Order of attributes is important for range queries.
  Such indexes can sometimes enable index-only strategies for

important queries.
•  For index-only strategies, clustering is not important!

  Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would benefit the
most from clustering. MS Index Tuning Wizard

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Examples of Clustered Indexes

  B+ tree index on E.age can be
used to get qualifying tuples.
  How selective is the condition?
  Is the index clustered?

 Consider the GROUP BY query.
  If many tuples have E.age > 10, using

E.age index and sorting the retrieved
tuples may be costly.

  Clustered E.dno index may be better!

  Equality queries and duplicates:
  Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Index-Only Plans

 A number of
queries can be
answered
without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable index
is available.

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
 E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.eid>
Tree index!

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
 or
<E.sal, E.age>

Tree!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Summary

 Many alternative file organizations exist, each
appropriate in some situation.

  If selection queries are frequent, sorting the
file or building an index is important.
  Hash-based indexes only good for equality search.
  Sorted files and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

  Index is a collection of data entries plus a way
to quickly find entries with given key values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Summary (Contd.)

 Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
  Choice orthogonal to indexing technique used to

locate data entries with a given key value.
 Can have several indexes on a given file of

data records, each with a different search key.
  Indexes can be classified as clustered vs.

unclustered, and primary vs. secondary.
Differences have important consequences for
utility/performance.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Summary (Contd.)

 Understanding the nature of the workload for the
application, and the performance goals, is essential
to developing a good design.
  What are the important queries and updates? What

attributes/relations are involved?

  Indexes must be chosen to speed up important
queries (and perhaps some updates!).
  Index maintenance overhead on updates to key fields.
  Choose indexes that can help many queries, if possible.
  Build indexes to support index-only strategies.
  Clustering is an important decision, demanding on DBMS

but potentially high payoff.

