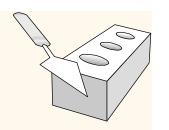
Cursor that gets names of sailors who'vel reserved a red boat, in alphabetical order

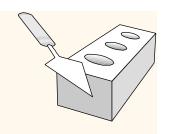
EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname

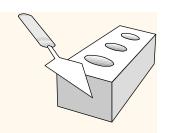

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color='red'

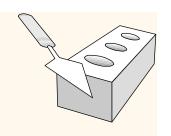
ORDER BY S.sname


Most implementations differ from SQL standard:

- Can use order by without cursor.
- Can have many expressions for order criteria.
- Including input columns or expressions that depend on input columns.


Internet Applications

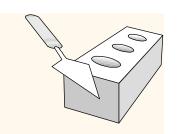
Chapter 7


Lecture Overview

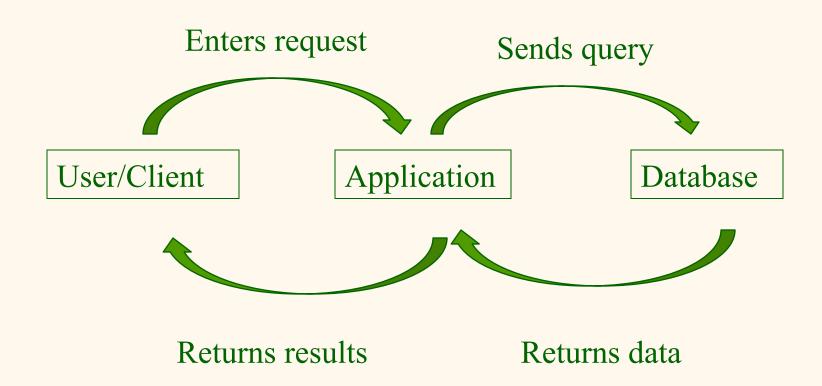
- Internet Concepts: Data Flow from Client to DBMS
- Introduction to three-tier architectures
- Web data formats
 - HTML, XML, DTDs
- The presentation layer
 - HTML forms; HTTP Get and POST, URL encoding; Javascript; Stylesheets. XSLT
- The middle tier
 - CGI, application servers, Servlets, JavaServerPages, passing arguments, maintaining state (cookies)

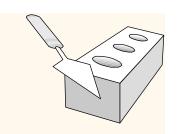
Lecture Overview

- Internet Concepts
- Web data formats
 - HTML, XML, DTDs
- Introduction to three-tier architectures
- The presentation layer
 - HTML forms; HTTP Get and POST, URL encoding; Javascript; Stylesheets. XSLT
- The middle tier
 - CGI, application servers, Servlets, JavaServerPages, passing arguments, maintaining state (cookies)



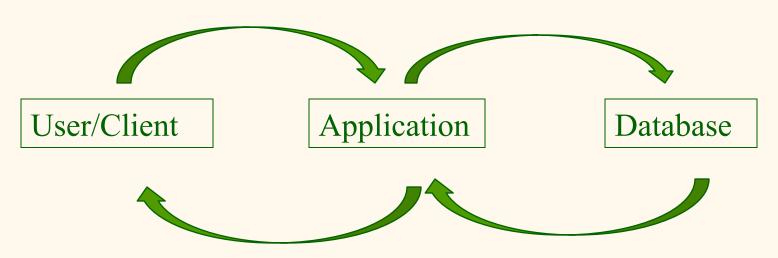
Components of Data-Intensive Systems


Three separate types of functionality:


- Data management
- Application logic
- Presentation

The system architecture determines whether these three components reside on a single system ("tier) or are distributed across several tiers

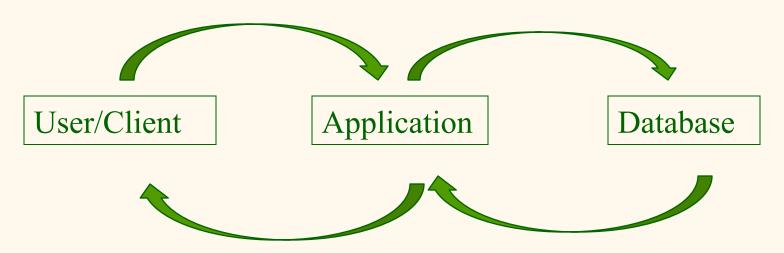
Process/Data Flow in Network



Example: Course Enrolment

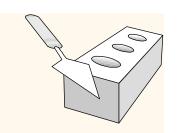
Enters request: add course, drop course

Sends query: Course availability, student info,...

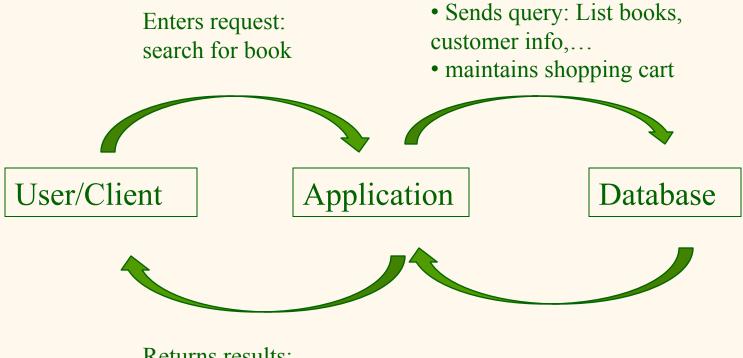

- Checks constraints
- returns confirmation for display

Returns data

Example: Airline Reservation System

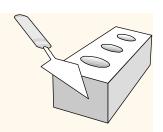

Enters request: log in, show seat map

Sends query: Airline info, available seats, customer info...



Returns results: map data for display, confirmation

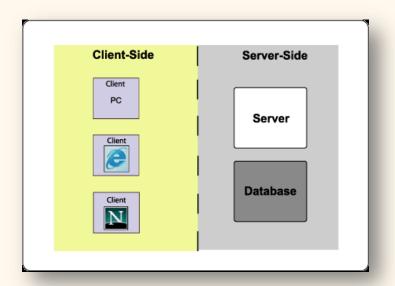
Returns data


Example: Book Order System

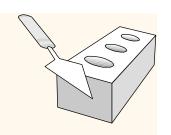
Returns results: requested data, recommendations, order information.

Returns data

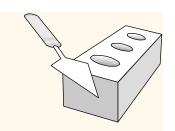
Client-Server Architectures



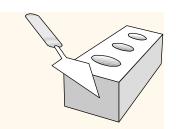
Work division: Thin client


- Client implements only the graphical user interface
- Server implements business logic and data management.
- Development supported by Visual Studio, Sybase Powerbuilder.

* Work division: Thick client


- Client implements both the graphical user interface and the business logic
- Server implements data management

Discussion Question


- What are advantages of thin clients?
- What are disadvantages of thin clients?
- What are advantages of thick clients?
- What are disadvantages of thick clients?

Client-Server Architectures

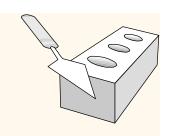
Disadvantages of thick clients

- No central place to update the business logic
- Security issues: Server needs to trust clients
 - Access control and authentication needs to be managed at the server
 - Clients need to leave server database in consistent state
 - One possibility: Encapsulate all database access into stored procedures
- Does not scale to more than several 100s of clients
 - Large data transfer between server and client
 - More than one server creates a problem: x clients, y servers: x*y connections

The Three-Tier Architecture

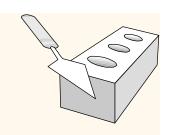
Presentation tier

Client Program (Web Browser)

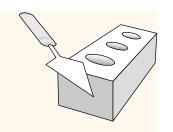

Middle tier

Application Server

Data management tier


Database System

1 0 u


Example 1: Airline reservations

- Build a system for making airline reservations
- * What is done in the different tiers?
- Database System
 - Airline info, available seats, customer info, etc.
- Application Server
 - Logic to make reservations, cancel reservations, add new airlines, etc.
- Client Program
 - Log in different users, display forms and humanreadable output

Example 2: Course Enrollment

- Build a system using which students can enroll in courses
- Database System
 - Student info, course info, instructor info, course availability, pre-requisites, etc.
- Application Server
 - Logic to add a course, drop a course, create a new course, etc.
- Client Program
 - Log in different users (students, staff, faculty), display forms and human-readable output

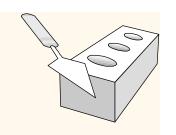
The Three Layers

Presentation tier

- Primary interface to the user
- Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)

Middle tier

- Implements business logic (implements complex actions, maintains state between different steps of a workflow)
- Accesses different data management systems


Data management tier

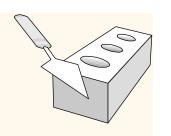
One or more standard database management systems

Advantages of the Three-Tier Architecture

- Heterogeneous systems
 - Tiers can be independently maintained, modified, and replaced
- Thin clients
 - Only presentation layer at clients (web browsers)
- Integrated data access
 - Several database systems can be handled transparently at the middle tier
 - Central management of connections
- Scalability
 - Replication at middle tier permits scalability of business logic
- Software development
 - Code for business logic is centralized
 - Interaction between tiers through well-defined APIs: Can reuse standard components at each tier

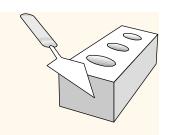
Technologies

Client Program (Web Browser)


HTML Javascript

Application Server (Tomcat, Apache)

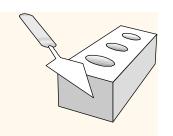
JSP Servlets Cookies CGI


Database System (DB2)

XML Stored Procedures

Overview of the Presentation Tier

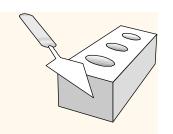
- Functionality of the presentation tier
 - Primary interface to the user
 - Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)
 - Simple functionality, such as field validity checking
- ❖ We will cover:
 - Http protocol.
 - XML, HTML Forms: How to pass data to the middle tier
 - JavaScript: Simple functionality at the presentation tier.



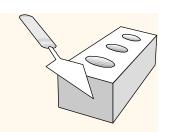
Uniform Resource Identifiers

- Uniform naming schema to identify resources on the Internet
- * A resource can be anything:
 - Index.html
 - mysong.mp3
 - picture.jpg

Example URIs:


http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Structure of URIs


http://www.cs.wisc.edu/~dbbook/index.html

- URI has three parts:
 - Naming schema (<u>http</u>)
 - Name of the host computer (<u>www.cs.wisc.edu</u>)
 - Name of the resource (<u>~dbbook/index.html</u>)
- URLs are a subset of URIs

Hypertext Transfer Protocol

- What is a communication protocol?
 - Set of standards that defines the structure of messages
 - Examples: TCP, IP, HTTP
- What happens if you click on www.cs.wisc.edu/~dbbook/index.html?
- 1. Client (web browser) sends HTTP request to server
- 2. Server receives request and replies
- 3. Client receives reply; makes new requests

HTTP (Contd.)

Client to Server:

GET ~/index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/html, image/gif, image/

jpeg

Server replies:

HTTP/1.1 200 OK

Date: Mon, 04 Mar 2002 12:00:00 GMT

Server: Apache/1.3.0 (Linux)

Last-Modified: Mon, 01 Mar 2002

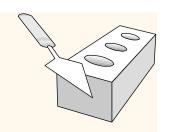
09:23:24 GMT

Content-Length: 1024

Content-Type: text/html

<HTML> <HEAD></HEAD>

<BODY>


<h1>Barns and Nobble Internet Bookstore</h1>

Our inventory:

<h3>Science</h3>

b>The Character of Physical Law

••

HTTP Protocol Structure

HTTP Requests

- ❖ Request line: GET ~/index.html HTTP/1.1
 - GET: Http method field (possible values are GET and POST, more later)
 - ~/index.html: URI field
 - HTTP/1.1: HTTP version field
- ❖ Type of client: User-agent: Mozilla/4.0
- What types of files will the client accept:

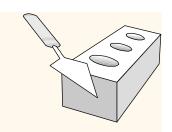
Accept: text/html, image/gif, image/jpeg

HTTP Protocol Structure (Contd.)

HTTP Responses

Status line: HTTP/1.1 200 OK

HTTP version: HTTP/1.1


Status code: 200

Server message: OK

- Common status code/server message combinations:
 - 200 OK: Request succeeded
 - 400 Bad Request: Request could not be fulfilled by the server
 - 404 Not Found: Requested object does not exist on the server
 - 505 HTTP Version not Supported
- Date when the object was created:

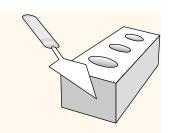
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

- Number of bytes being sent: Content-Length: 1024
- What type is the object being sent: Content-Type: text/html
- Other information such as the server type, server time, etc.

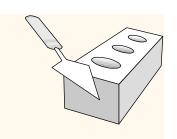
Some Remarks About HTTP

HTTP is stateless

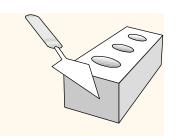
- No "sessions"
- Every message is completely self-contained
- No previous interaction is "remembered" by the protocol
- Tradeoff between ease of implementation and ease of application development: Other functionality has to be built on top


Implications for applications:

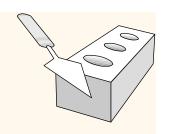
- Any state information (shopping carts, user login-information) need to be encoded in every HTTP request and response!
- Popular methods on how to maintain state:
 - Cookies (later this lecture)
 - Dynamically generate unique URL's at the server level (later this lecture)


Web Data Formats

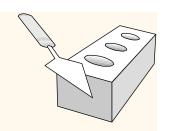
- * HTML
 - The presentation language for the Internet
- * XML
 - A self-describing, hierarchical data model.
 - XML Examples and Exercises
- * And others, e.g. SGML, not covered.


HTML: An Example

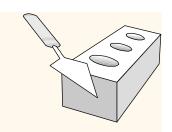
```
<HTMI>
                                          <h3>Fiction</h3>
 <HEAD></HEAD>
                                          <br/><br/>b>Waiting for the Mahatma</b>
 <BODY>
                                          <UL>
  <h1>Barns and Nobble Internet
                                            <LI>Author: R.K. Narayan</LI>
   Bookstore</h1>
                                            <LI>Published 1981</LI>
 Our inventory:
                                          </UL>
                                          <br/>
<br/>
b>The English Teacher</b>
  <h3>Science</h3>
                                          <UL>
  <b>The Character of Physical Law
   h>
                                            <LI>Author: R.K. Narayan</LI>
 <UL>
                                            <LI>Published 1980</LI>
   <LI>Author: Richard Feynman/
                                            <LI>Paperback</LI>
   LI>
                                          </UL>
   <LI>Published 1980</LI>
   <LI>Hardcover</LI>
                                          </BODY>
  </UL>
                                        </HTML>
```



HTML: A Short Introduction

- HTML is a markup language: for presentation.
- Commands are tags:
 - Start tag and end tag
 - Examples:
 - <HTML> ... </HTML>
 - ...
- Many editors automatically generate HTML directly from your document (e.g., Microsoft Word has an "Save as html" facility)

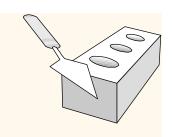

HTML: Sample Commands

- **⋄** <HTML>:
- ❖ : unordered list
- ❖ : list entry
- <h1>: largest heading
- <h2>: second-level heading, <h3>, <h4> analogous
- * Title: Bold


XML - The Extensible Markup Language

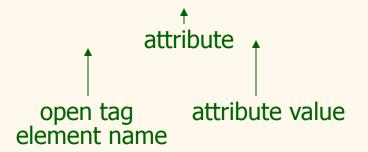
- Language
 - A way of communicating information
 - Part of the Semantic Web.
- Markup
 - Notes or meta-data that describe your data or language
- Extensible
- Limitless ability to define new languages or data sets.
- Sophisticated query languages for XML are available:
 - Xquery
 - XPath

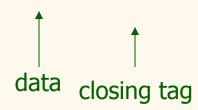
XML: An Example

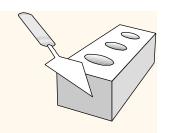

```
<?XML version="1.0" encoding="UTF-8" standalone="yes"?>
<BOOKLIST>
 <BOOK genre="Science" format="Hardcover">
   <AUTHOR>
     <FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
   </AUTHOR>
   <TITLE>The Character of Physical Law</TITLE>
   <PUBLISHED>1980</PUBLISHED>
 </BOOK>
 <BOOK genre="Fiction">
   <AUTHOR>
     <FIRSTNAME>R.K./FIRSTNAME><LASTNAME>Narayan/LASTNAME>
   </AUTHOR>
   <TITLE>Waiting for the Mahatma</TITLE>
   <PUBLISHED>1981</PUBLISHED>
 </BOOK>
 <BOOK genre="Fiction">
   <AUTHOR>
     <FIRSTNAME>R.K./FIRSTNAME><LASTNAME>Narayan/LASTNAME>
   </AUTHOR>
   <TITLE>The English Teacher</TITLE>
   <PUBLISHED>1980</PUBLISHED>
 </BOOK>
</BOOKLIST>
```


XML - What's The Point?

- You can include your data and a description of what the data represents
 - This is useful for defining your own language or protocol
- Example: Chemical Markup Language

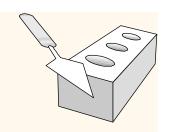

- * XML design goals:
 - XML should be compatible with SGML
 - It should be easy to write XML processors
 - The design should be formal and precise




XML – Structure

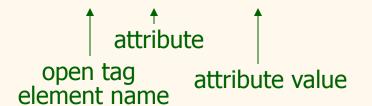
- * XML looks like HTML
- XML is a hierarchy of user-defined tags called elements with attributes and data
- Data is described by elements, elements are described by attributes

<BOOK genre="Science" format="Hardcover">...</BOOK>



XML - Elements

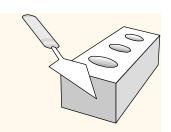
<BOOK genre="Science" format="Hardcover">...</BOOK>



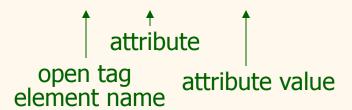
- XML is case and space sensitive
- Element opening and closing tag names must be identical
- Opening tags: "<" + element name + ">"
- Closing tags: "</" + element name + ">"

XML – Attributes

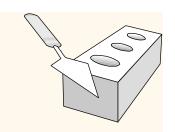
<BOOK genre="Science" format="Hardcover">...</BOOK>



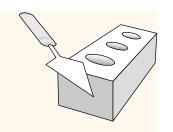
- Attributes provide additional information for element tags.
- * There can be zero or more attributes in every element; each one has the the form:


attribute_name='attribute_value'

- There is no space between the name and the "='"
- Attribute values must be surrounded by " or ' characters
- Multiple attributes are separated by white space (one or more spaces or tabs).

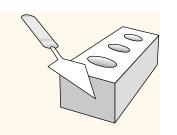

XML – Data and Comments

<BOOK genre="Science" format="Hardcover">...</BOOK>

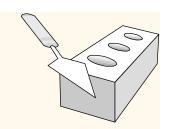

- * XML data is any information between an opening and closing tag
- ❖ XML data must not contain the '<' or '>' characters
- Comments:
 <!- comment ->

XML - Nesting & Hierarchy

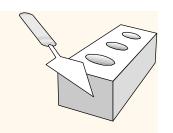
- * XML tags can be nested in a tree hierarchy
- * XML documents can have only one root tag
- * Between an opening and closing tag you can insert:
 - 1. Data
 - 2. More Elements
 - 3. A combination of data and elements


```
<root>
     <tag1>
          Some Text
          <tag2>More</tag2>
          </tag1>
</root>
XML Examples and Exercises
```


XML – Storage


Storage is done just like an n-ary tree (DOM)

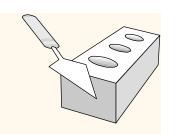
```
<root>
                                                  Type: Element_Node
                                        Node
                                                  Name: Element
  <tag1>
                                                  Value: Root
     Some Text
                                                  Type: Element_Node
     <tag2>More</tag2>
                                        Node
                                                  Name: Element
  </tag1>
                                                  Value: tag1
</root>
            Type: Text_Node
                                                        Type: Element_Node
            Name: Text
                                 Node
                                               Node
                                                        Name: Element
            Value: Some Text
                                                        Value: tag2
                                                         Type: Text_Node
                                               Node
                                                         Name: Text
                                                         Value: More
```



DTD - Document Type Definition

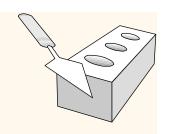
- * A DTD is a schema for XML data
- XML protocols and languages can be standardized with DTD files
- A DTD says what elements and attributes are required or optional
 - Defines the formal structure of the language

DTD – An Example



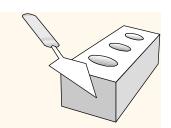
DTD - !ELEMENT

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >


Name Children

- * !ELEMENT declares an element name, and what children elements it should have
- Content types:
 - Other elements
 - #PCDATA (parsed character data)
 - EMPTY (no content)
 - ANY (no checking inside this structure)
 - A regular expression

DTD - !ELEMENT (Contd.)


- A regular expression has the following structure:
 - \exp_1 , \exp_2 , \exp_3 , ..., \exp_k : A list of regular expressions
 - exp*: An optional expression with zero or more occurrences
 - exp+: An optional expression with one or more occurrences
 - $\exp_1 | \exp_2 | \dots | \exp_k$: A disjunction of expressions

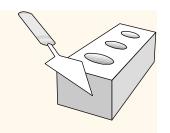
DTD - !ATTLIST

<!ATTLIST Orange location CDATA #REQUIRED color 'orange'>

- !ATTLIST defines a list of attributes for an element
- * Attributes can be of different types, can be required or not required, and they can have default values.

DTD - Well-Formed and Valid

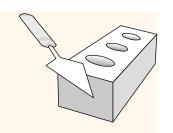
```
<?XML version='1.0'?>
<!ELEMENT Basket (Cherry+)>
    <!ELEMENT Cherry EMPTY>
        <!ATTLIST Cherry flavor CDATA #REQUIRED>
```


Not Well-Formed but Invalid

<b

```
Well-Formed and Valid

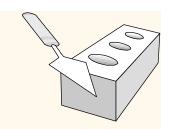
<Basket>


<Cherry flavor='good'/>

</Basket>
```


XML and DTDs

- More and more standardized DTDs will be developed
 - MathML
 - Chemical Markup Language
- Allows light-weight exchange of data with the same semantics

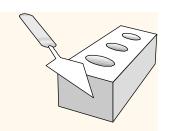


HTML Forms

- Common way to communicate data from client to middle tier
- General format of a form:
 - <FORM ACTION="page.jsp" METHOD="GET" NAME="LoginForm">

... </FORM>

- Components of an HTML FORM tag:
 - ACTION: Specifies URI that handles the content
 - METHOD: Specifies HTTP GET or POST method
 - NAME: Name of the form; can be used in client-side scripts to refer to the form



Inside HTML Forms

INPUT tag

- Attributes:
 - TYPE: text (text input field), password (text input field where input is, reset (resets all input fields)
 - NAME: symbolic name, used to identify field value at the middle tier
 - VALUE: default value
- Example: <INPUT TYPE="text" Name="title">

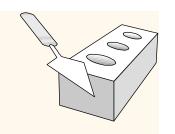
Example form:

Passing Arguments

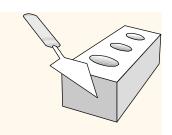
Two methods: GET and POST

- * GET
 - Form contents go into the submitted URI
 - Structure:

action?name1=value1&name2=value2&name3=value3


- Action: name of the URI specified in the form
- (name,value)-pairs come from INPUT fields in the form; empty fields have empty values ("name=")
- Example from previous password form:
 TableOfContents.jsp?userid=john&password=johnpw
- Note that the page named action needs to be a program, script, or page that will process the user input

- Form fields can contain general ASCII characters that cannot appear in an URI
- * A special encoding convention converts such field values into "URI-compatible" characters:
 - 1. Convert all "special" characters to "xyz, were xyz is the ASCII code of the character. Special characters include &, =, +, %, etc.
 - 2. Convert all spaces to the "+" character
 - 3. Glue (name, value)-pairs from the form INPUT tags together with "&" to form the URI

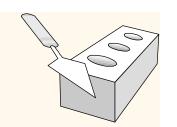

HTML Forms: A Complete Example

```
<form method="POST" action="TableOfContents.jsp">
  Userid
     <input type="text" name="userid" size="20">
  Password
     <input type="password" name="password" size="20">
  <input type="submit" value="Login"
          name="submit">
  </form>
```


JavaScript

- Goal: Add functionality to the presentation tier.
- Sample applications:
 - Detect browser type and load browser-specific page
 - Form validation: Validate form input fields
 - Browser control: Open new windows, close existing windows (example: pop-up ads)
- Usually embedded directly inside the HTML with the SCRIPT> ... </SCRIPT> tag.
- <SCRIPT> tag has several attributes:
 - LANGUAGE: specifies language of the script (such as javascript)
 - SRC: external file with script code
 - Example:
 <SCRIPT LANGUAGE="JavaScript" SRC="validate.js>
 </SCRIPT>

JavaScript (Contd.)


- ❖ If <SCRIPT> tag does not have a SRC attribute, then the JavaScript is directly in the HTML file.
- * Example:

```
<SCRIPT LANGUAGE="JavaScript">
<!-- alert("Welcome to our bookstore")
//-->
</SCRIPT>
```

- Two different commenting styles
 - <!-- comment for HTML, since the following JavaScript code should be ignored by the HTML processor
 - // comment for JavaScript in order to end the HTML comment

JavaScript (Contd.)

- JavaScript is a complete scripting language
 - Variables
 - Assignments (=, +=, ...)
 - Comparison operators (<,>,...), boolean operators (&&, | |,!)
 - Statements
 - if (condition) {statements;} else {statements;}
 - for loops, do-while loops, and while-loops
 - Functions with return values
 - Create functions using the function keyword
 - f(arg1, ..., argk) {statements;}

JavaScript: A Complete Example

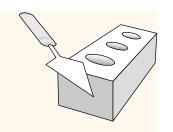
HTML Form:

```
<form method="POST"

action="TableOfContents.jsp">

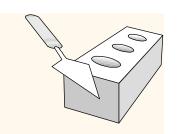
<input type="text"
name="userid">

<input type="password"
name="password">

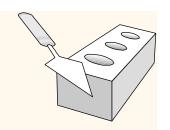

<input type="submit"
value="Login"
name="submit">

<input type="reset"
value="Clear">

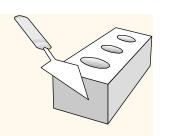
</form>
```


Associated JavaScript:

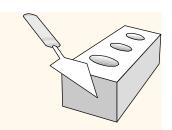
```
<script language="javascript">
function testLoginEmpty()
loginForm = document.LoginForm
 if ((loginForm.userid.value == "") | |
  (loginForm.password.value == ""))
  alert('Please enter values for userid and
   password.');
  return false;
 else return true;
</script>
```



Lecture Overview

- Internet Concepts
- Web data formats
 - HTML, XML, DTDs
- Introduction to three-tier architectures
- The presentation layer
 - HTML forms; HTTP Get and POST, URL encoding; Javascript; Stylesheets. XSLT
- The middle tier
 - CGI, application servers, Servlets, JavaServerPages, passing arguments, maintaining state (cookies)


Overview of the Middle Tier

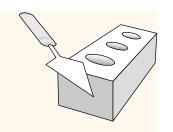
- Functionality of the middle tier
 - Encodes business logic
 - Connects to database system(s)
 - Accepts form input from the presentation tier
 - Generates output for the presentation tier
- * We will cover
 - CGI: Protocol for passing arguments to programs running at the middle tier
 - Application servers: Runtime environment at the middle tier
 - Maintaining state: How to maintain state at the middle tier.
 Main focus: Cookies.


W3Schools vs. W3Fools

- **❖** W3Schools is actually *not* related to W3C.
- * Mondial data in <u>SQL</u> vs. <u>XML</u>.

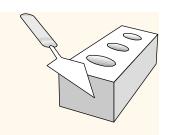
CGI: Common Gateway Interface

- Transmits arguments from HTML forms to application programs running at the middle tier
- ❖ Details of the actual CGI protocol unimportant → libraries implement high-level interfaces
- * Example: Implementing a wiki.
 - The user agent requests the name of an entry.
 - The server retrieves the source of that entry's page.
 - Transforms it into <u>HTML</u>
 - Sends the result.


CGI: Example

* HTML form:

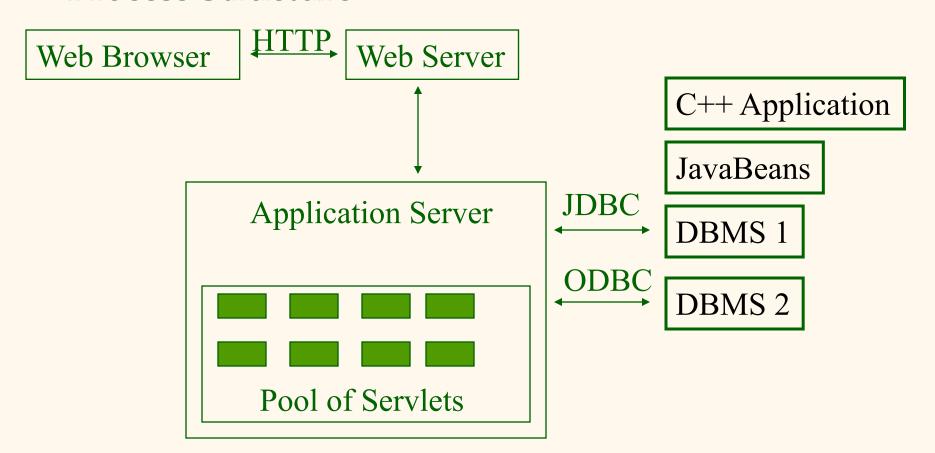
```
<form action="findbooks.cgi" method=POST>
Type an author name:
<input type="text" name="authorName">
<input type="submit" value="Send it">
<input type="reset" value="Clear form">
</form>
```

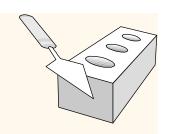

* Perl code:

```
use CGI;
$dataIn=new CGI;
$dataIn->header();
$authorName=$dataIn->param('authorName');
print("<HTML><TITLE>Argument passing test</TITLE>");
print("The author name is " + $authorName);
print("</HTML>");
exit;
```


CGI Disadvantages

- Disadvantages:
 - Each CGI script invocation leads to a new process.
 - No resource sharing between application programs (e.g., database connections)
 - Remedy: Application servers share treads in process.

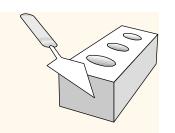



Application Servers

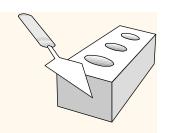
- Idea: Avoid the overhead of CGI
 - Main pool of threads inside processes.
 - Requests are assigned to threads (cheap) rather than separate processes.
 - Manage connections
 - Enable access to heterogeneous data sources
 - Other functionality such as APIs for session management.
 - Servlets handle client requests using Java.

Application Server: Process Structure

Process Structure



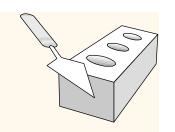
Maintaining State


HTTP is stateless.

- Advantages
 - Easy to use: don't need memory management.
 - Great for static-information applications ("fire and forget")
 - Requires no extra memory space
- Disadvantages
 - No record of previous requests means
 - No shopping baskets
 - No user logins
 - No custom or dynamic content
 - Security is more difficult to implement

Application State

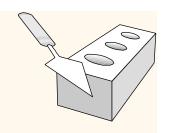
- Server-side state
 - Information is stored in a database, or in the application layer's local memory
- Client-side state
 - Information is stored on the client's computer in the form of a cookie
- Hidden state
 - Information is hidden within dynamically created web pages



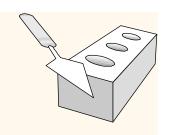
Application State

So many kinds of state...

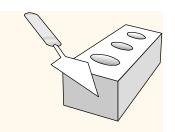
...how will I choose?



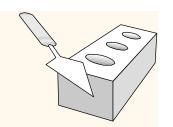
Server-Side State


- Many types of Server side state:
- * 1. Store information in a database
 - Data will be safe in the database
 - BUT: requires a database access to query or update the information
- 2. Use application layer's local memory
 - Can map the user's IP address to some state
 - BUT: this information is volatile and takes up lots of server main memory

5 million IPs = 20 MB

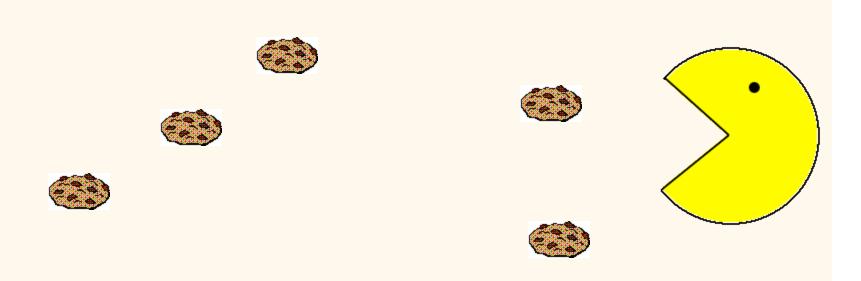

Server-Side State

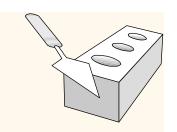
- Should use Server-side state maintenance for information that needs to persist
 - Old customer orders
 - "Click trails" of a user's movement through a site
 - Permanent choices a user makes


Client-side State: Cookies

- Storing text on the client which will be passed to the application with every HTTP request.
 - Can be disabled by the client.
 - Are wrongfully perceived as "dangerous", and therefore will scare away potential site visitors if asked to enable cookies¹
- Are a collection of (Name, Value) pairs.
- Discussion Question: what do you think of cookies?

Client State: Cookies

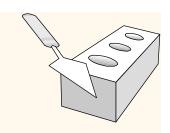

- Advantages
 - Easy to use in Java Servlets / JSP
 - Provide a simple way to keep non-essential data on the client side even when the browser has closed
- Disadvantages
 - Limit of 4 kilobytes of information
 - Users can (and often will) disable them
- Should use cookies to store interactive state
 - The current user's login information
 - The current shopping basket
 - Any non-permanent choices the user has made



Creating A Cookie

```
Cookie myCookie =
  new Cookie("username", "jeffd");
response.addCookie(userCookie);
```

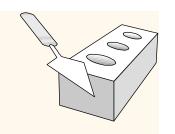
You can create a cookie at any time



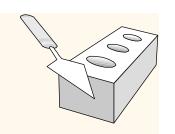
Accessing A Cookie

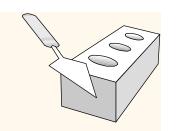
```
Cookie[] cookies = request.getCookies();
String theUser;
for(int i=0; i<cookies.length; i++) {
   Cookie cookie = cookies[i];
   if(cookie.getName().equals("username"))
        theUser = cookie.getValue();
}
// at this point theUser == "username"</pre>
```

* Cookies need to be accessed BEFORE you set your response header:


```
response.setContentType("text/html");
PrintWriter out = response.getWriter();
```


Cookie Features

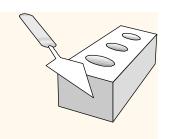

- Cookies can have
 - A duration (expire right away or persist even after the browser has closed)
 - Filters for which domains/directory paths the cookie is sent to.


Hidden State

- Often users will disable cookies
- You can "hide" data in two places:
 - Hidden fields within a form
 - Using the path information
- Requires no "storage" of information because the state information is passed inside of each web page

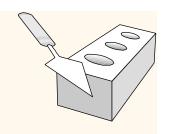
Hidden State: Hidden Fields

- * Declare hidden fields within a form:
 - <input type='hidden' name='user' value='username'/>
- Users will not see this information (unless they view the HTML source)
- * If used prolifically, it's a killer for performance since EVERY page must be contained within a form.



Hidden State: Path Information

Path information is stored in the URL request:


http://server.com/index.htm?user=jeffd

- Can separate 'fields' with an & character: index.htm?user=jeffd&preference=pepsi
- * There are mechanisms to parse this field in Java. Check out the javax.servlet.http.HttpUtils parserQueryString() method.

Multiple state methods

- Typically all methods of state maintenance are used:
 - User logs in and this information is stored in a cookie
 - User issues a query which is stored in the path information
 - User places an item in a shopping basket cookie
 - User purchases items and credit-card information is stored/retrieved from a database
 - User leaves a click-stream which is kept in a log on the web server (which can later be analyzed)

Summary

We covered:

- Internet Concepts (URIs, HTTP)
- Web data formats
 - HTML, XML, DTDs
- * Three-tier architectures
- The presentation layer
 - HTML forms; HTTP Get and POST, URL encoding; Javascript.
- ❖ The middle tier
 - CGI, application servers, Servlets, passing arguments, maintaining state (cookies).
- * Only lecture material will be on exam (not other material from Ch.7).