
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Database Application Development

Chapter 6

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview

Concepts covered in this lecture:
  SQL in application code
  Embedded SQL
 Cursors
 Dynamic SQL
  Stored procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Introduction
  So far:

  interactive SQL interface,
  pure “SQL programs”.

  In practice often:
  queries are not ad-hoc, but programmed once and

executed repeatedly,
  need the greater flexibility of a general-purpose

programming language, especially for complex
calculations (e.g. recursive functions) and graphic
user interfaces.

• SQL statements part of a larger software
system

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

The Three-Tier Architecture

  The following three-tier architecture is common
for database installations:
  Web servers connect clients to the DBS, typically

over the Internet (web-server tier).
  Applications servers perform the “business logic”

requested by the webserves, supported by the
database servers (application tier).

  Database servers execute queries and modifications
of the database for the application servers (database
tier).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

The Three-Tier Architecture

Database
Server

DB

Database
Server

Application
Server

Application
Server

Application
Server

Web
Server

Web
Server

Web
Server

Web
Server

Client Client Client Client Client

Internet

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Key Questions

 How do we send SQL commands to a
database management system from within an
application program?

 How do we get the answer back in a way that
can be processed by the application program?

 Rather than extending a programming
language with SQL capability, how about
extending SQL with programming
capabilities?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

SQL in Application Code
  SQL commands can be called from within a

host language (e.g., C++ or Java) program.
  SQL statements can refer to host variables

(including special variables used to return status).
  Must include a statement to connect to the right

database.

  Two main integration approaches:
  Embed SQL in the host language (Embedded SQL,

SQLJ)
  Create special API to call SQL commands (JDBC,

Visual Studio).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Overview
Static Queries: Query
form known at
compile time

Dynamic Queries

Execution in
Application Space

Embedded SQL
SQLJ

API:
Dynamic SQL
ODBC, JDBC

Server Execution Stored Procedure
SQL/PSM

Could also have dynamic stored procedures but we won’t
discuss it.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

SQL in Application Code (Contd.)

Impedance mismatch:
  SQL relations are (multi-) sets of records, with

no a priori bound on the number of records.
No such data structure exist traditionally in
procedural programming languages such as
C++.
  SQL supports a mechanism called a cursor to

handle this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Embedded SQL
 Approach: Embed SQL in the host language.

  A preprocessor converts the SQL statements into
special API calls for a database system.

  Then a regular compiler is used to compile the
code.

Host language +
Embedded SQL

Preprocessor

Host language
Compiler

Host language +
Function calls

Host language
Object code

SQL Library

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Embedded SQL

  Embedded SQL constructs:
  Connecting to a database:

EXEC SQL CONNECT
  Declaring shared variables:

EXEC SQL BEGIN (END) DECLARE SECTION
  SQL Statements:

EXEC SQL Statement;
 all statements except queries can be directly
embedded

  Declaring and manipulating cursors
 for embedding SQL queries

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

  Two special “error” variables:
  SQLCODE (long, is negative if an error has occurred)
  SQLSTATE (char[6], predefined codes for common errors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Cursors

 Can declare a cursor on a relation or query
statement (which generates a relation).

 Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.
  Can use a special clause, called ORDER BY, in queries that

are accessed through a cursor, to control the order in
which tuples are returned.

• Fields in ORDER BY clause must also appear in SELECT clause.

 Can also modify/delete tuple pointed to by a cursor.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Cursor that gets names of sailors who’ve
reserved a red boat, in alphabetical order

 Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause! (Why?)

 Can we add S.sid to the SELECT clause and
replace S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR
 SELECT S.sname
 FROM Sailors S, Boats B, Reserves R
 WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 ORDER BY S.sname

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Embedding SQL in C: An Example
char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = random();
EXEC SQL DECLARE sinfo CURSOR FOR
 SELECT S.sname, S.age FROM Sailors S
 WHERE S.rating > :c_minrating
 ORDER BY S.sname;
EXEC SQL OPEN sinfo;
do {
 EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
 printf(“%s is %d years old\n”, c_sname, c_age);
} while (SQLSTATE != ‘02000’);
EXEC SQL CLOSE sinfo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Database APIs: Alternative to
embedding

Rather than modify compiler, add library with database
calls (API)

  Special standardized interface: procedures/objects
  Pass SQL strings from language, presents result sets

in a language-friendly way
  Sun’s JDBC: Java API
  Supposedly DBMS-neutral

  a “driver” traps the calls and translates them into DBMS-
specific code

  database can be across a network.
  Source code and executable is independent of DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Dynamic SQL
 Often, the concrete SQL statement is known

not at compile time, but only at runtime.
  Example 1: a program prompts user for

parameters of SQL query, reads the parameters
and executes query.

  Example 2: a program prompts user for an SQL
query, reads and executes it.

 Construction of SQL statements on-the-fly:
PREPARE: parse and compile SQL command.
EXECUTE: execute command.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Dynamic SQL: Example

char c_sqlstring[]=
{“DELETE FROM Sailors WHERE rating > 5”};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

JDBC: Architecture

  Four architectural components:
  Application (initiates and terminates connections,

submits SQL statements)
  Driver manager (load JDBC driver)
  Driver (connects to data source, transmits requests

and returns/translates results and error codes)
  Data source (processes SQL statements)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

JDBC Driver Management

 All drivers are managed by the
DriverManager class

  Loading a JDBC driver:
  In the Java code:

Class.forName(“oracle/jdbc.driver.Oracledriver”);
  When starting the Java application:

-Djdbc.drivers=oracle/jdbc.driver

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Connections in JDBC

We interact with a data source through sessions. Each
connection identifies a logical session.

  JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:
String url=“jdbc:oracle:www.bookstore.com:3083”;
Connection con;
try{
 con = DriverManager.getConnection(url,usedId,password);
} catch SQLException excpt { …}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Connection Class Interface
  public boolean getReadOnly() and

void setReadOnly(boolean b)
Specifies whether transactions in this connection are read-
only

  public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using commit(), or aborted using rollback().

  public boolean isClosed()
Checks whether connection is still open.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Connection Class Interface
  public boolean getReadOnly() and

void setReadOnly(boolean b)
Specifies whether transactions in this connection are read-
only

  public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using commit(), or aborted using rollback().

  public boolean isClosed()
Checks whether connection is still open.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

ResultSets

A ResultSet is a very powerful cursor:
  previous(): moves one row back
  absolute(int num): moves to the row with the

specified number
  relative (int num): moves forward or

backward
  first() and last()
 RecordSet, DataReader in Visual Basic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Call ResultSets

  PreparedStatement.executeUpdate only returns the
number of affected records

  PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);
// rs is now a cursor
While (rs.next()) {
 // process the data
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

A (Semi-)Complete Example

Connection con = // connect
 DriverManager.getConnection(url, ”login", ”pass");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions
 // loop through result tuples
 while (rs.next()) {
 String s = rs.getString(“name");
 Int n = rs.getFloat(“rating");
 System.out.println(s + " " + n);
 }
} catch(SQLException ex) {
 System.out.println(ex.getMessage ()
 + ex.getSQLState () + ex.getErrorCode ());
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Visual Studio Example
Visual Studio Connection Example

see course website.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Stored Procedures

 What is a stored procedure:
  Program executed through a single SQL statement
  Executed in the process space of the server

 Advantages:
  Can encapsulate application logic while staying

“close” to the data
  Reuse of application logic by different users
  Avoid tuple-at-a-time return of records through

cursors

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Stored Procedures
 A stored procedure is a function / procedure

written in a general-purpose programming
language that is executed within the DBS.

 Allows to perform computations that cannot
be expressed in SQL.

  Procedure executed through a single SQL
statement.

  Executed in the process space of the DB
server.

  SQL standard: PSM (Persistent Stored
Modules). Extends SQL by basic concepts of a
general-purpose programming language.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Stored Procedures: Examples
CREATE PROCEDURE ShowNumReservations

SELECT S.sid, S.sname, COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

Stored procedures can have parameters:
  Three different modes: IN, OUT, INOUT

CREATE PROCEDURE IncreaseRating(
IN sailor_sid INTEGER, IN increase INTEGER)

UPDATE Sailors
 SET rating = rating + increase

WHERE sid = sailor_sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Stored Procedures: Examples
(Contd.)
Stored procedure do not have to be written in

SQL:

CREATE PROCEDURE TopSailors(
IN num INTEGER)

LANGUAGE JAVA
EXTERNAL NAME “file:///c:/storedProcs/rank.jar”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Calling Stored Procedures

EXEC SQL BEGIN DECLARE SECTION
Int sid;
Int rating;
EXEC SQL END DECLARE SECTION

// now increase the rating of this sailor
EXEC SQL CALL IncreaseRating(:sid,:rating);

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

SQL/PSM
Most DBMSs allow users to write stored procedures in a

simple, general-purpose language (close to SQL) 
SQL/PSM standard is a representative

Declare a stored procedure:
CREATE PROCEDURE name(p1, p2, …, pn)
 local variable declarations
 procedure code;
Declare a function:
CREATE FUNCTION name (p1, …, pn) RETURNS

sqlDataType
local variable declarations

 function code;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Main SQL/PSM Constructs
CREATE FUNCTION rate Sailor

 (IN sailorId INTEGER)
 RETURNS INTEGER

DECLARE rating INTEGER
DECLARE numRes INTEGER
SET numRes = (SELECT COUNT(*)
 FROM Reserves R

 WHERE R.sid = sailorId)
IF (numRes > 10) THEN rating =1;
ELSE rating = 0;
END IF;
RETURN rating;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Main SQL/PSM Constructs (Contd.)

  Local variables (DECLARE)
  RETURN values for FUNCTION
  Assign variables with SET
  Branches and loops:

  IF (condition) THEN statements;
ELSEIF (condition) statements;
… ELSE statements; END IF;

  LOOP statements; END LOOP

  Queries can be parts of expressions
  Can use cursors without “EXEC SQL”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Calling Stored Procedures (Contd.)

JDBC:
CallableStatement cstmt=

con.prepareCall(“{call
ShowSailors});

ResultSet rs =
cstmt.executeQuery();

while (rs.next()) {
 …
}

SQLJ:
#sql iterator ShowSailors

(…);
ShowSailors showsailors;
#sql showsailors={CALL

ShowSailors};
while (showsailors.next()) {
 …
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Summary
  Embedded SQL allows execution of

parametrized static queries within a host
language

 Dynamic SQL allows execution of completely ad-
hoc queries within a host language

 Cursor mechanism allows retrieval of one record
at a time and bridges impedance mismatch
between host language and SQL

 APIs such as JDBC introduce a layer of
abstraction between application and DBMS

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Summary (Contd.)

  Stored procedures execute application logic
directly at the server

  SQL/PSM standard for writing stored
procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Midterm News

 Answer Key will be emailed today.
 Grades probably released today too.
 Grades are out of 70 points total.
 You can visit your midterm in office hours on

Monday.

