
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

SQL: Queries, Programming,
Triggers

Chapter 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Introduction

 We now introduce SQL, the standard query
language for relational DBS.

  Like relational algebra, an SQL query takes
one or two input tables and returns one
output table.

 Any RA query can also be formulated in SQL.
  In addition, SQL contains certain features of

that go beyond the expressiveness of RA, e.g.
sorting and aggregation functions.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Example Instances

Reserves

Sailors

bid colour

101 green

103 red

Boats

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Basic SQL Query

  relation-list A list of relation names (possibly with a
range-variable after each name).

  target-list A list of attributes of relations in relation-list
  qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of)
combined using AND, OR and NOT.

  DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Conceptual Evaluation Strategy

  Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
  Compute the cross-product of relation-list.
  Discard resulting tuples if they fail qualifications.
  Delete attributes that are not in target-list.
  If DISTINCT is specified, eliminate duplicate rows.

  This strategy is typically the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

A Note on Range Variables

 Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
 AND bid=103

It is good style,
however, to use
range variables
always! OR

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

π-σ-× Queries
  SELECT [DISTINCT] S.sname

  π sname

  FROM Sailors, Reserves
  Sailors × Reserves

  WHERE S.sid=R.sid AND R.bid=103
  σ Sailors.sid = Reserves.sid and Reserves.bid=103

  SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103
=
π sname(σSailors.sid = Reserves.sid and Reserves.bid=103(Sailors ×
Reserves))

  It is often helpful to write an SQL query in the same order
(FROM, WHERE, SELECT).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Find sailors who’ve reserved at least one boat

 Would adding DISTINCT to this query make a
difference?

 What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Expressions and Strings

  Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

  AS and = are two ways to name fields in result.
  LIKE is used for string matching. `_’ stands for any

one character and `%’ stands for 0 or more arbitrary
characters. case sensitvity Oracle on Strings

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘b_%b’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Find sid’s of sailors who’ve reserved a red or a green boat

  UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

  If we replace OR by AND in
the first version, what do
we get?

  Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Find sid’s of sailors who’ve reserved a red and a green boat

  INTERSECT: Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

  Included in the SQL/92
standard, but some
systems don’t support it.

  Contrast symmetry of the
UNION and INTERSECT
queries with how much
the other versions differ.

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
 AND S.sid=R2.sid AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

Key field!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Exercise 5.2
Consider the following schema.

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog lists the prices charged for parts by Suppliers.
Write the following queries in SQL:

1.  Find the pnames of parts for which there is some supplier.

2.  Find the sids of suppliers who supply a red part or a green
part.

3.  Find the sids of suppliers who supply a red part and a
green part.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Nested Queries

 A powerful feature of SQL: a WHERE clause can itself
contain an SQL query! (Actually, so can FROM and
HAVING clauses.)

  To find sailors who’ve not reserved #103, use NOT IN.
  To understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Nested Queries with Correlation

  EXISTS is another set comparison operator, like IN.
  Illustrates why, in general, subquery must be re-

computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Exercise 5.2 ctd.
Consider the following schema.

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog lists the prices charged for parts by Suppliers.
Write the following queries in SQL. You can use NOT
EXISTS.

1.  Find the sids of suppliers who supply only red parts.

2.  Find the snames of suppliers who supply every part.
(difficult)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

More on Set-Comparison Operators

 We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

 Also available: op ANY, op ALL

  Find sailors whose rating is greater than that of some
sailor called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Simple Examples for Any and All

  1 = Any {1,3} True
  1 = All {1,3} False
  1 = Any {} False
  1 = All {} True

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Rewriting INTERSECT Queries Using IN

  Similarly, EXCEPT queries re-written using NOT IN.
  To find names (not sid’s) of Sailors who’ve reserved

both red and green boats, just replace S.sid by S.sname
in SELECT clause.

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 AND S.sid IN (SELECT S2.sid
 FROM Sailors S2, Boats B2, Reserves R2
 WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Division in SQL

  Let’s do it the hard
way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS
 ((SELECT B.bid
 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

(1)

(2)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Summary: SQL Set Operators

 UNION, INTERSECT, EXCEPT behave like
their relational algebra counterpart.

 New Operator EXISTS tests if a relation is
empty.

 Can use ANY, ALL to compare a value
against values in a set.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Follow-UP
 On “not equals”.
  The SQL Standard operator ANSI is <>.
 Apparently many systems support != as

well not equals discussion.
 We teach the standard but accept other

common uses (unless explicitly ruled out).
 We’ll start with group by and assertions,

the come back to null values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Null Values

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Null Values
  Special attribute value NULL can be interpreted as

 Value unknown (e.g., a rating has not yet been assigned),
 Value inapplicable (e.g., no spouse’s name),
 Value withheld (e.g., the phone number).

 The presence of NULL complicates many issues:
  Special operators needed to check if value is null.
  Is rating>8 true or false when rating is equal to null?
 What about AND, OR and NOT connectives?
 Meaning of constructs must be defined carefully.

 E.g., how to deal with tuples that evaluate neither to
TRUE nor to FALSE in a selection?

 Mondial Example

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Null Values
 NULL is not a constant that can be explicitly used as an

argument of some expression.
 NULL values need to be taken into account when

evaluating conditions in the WHERE clause.
 Rules for NULL values:

 An arithmetic operator with (at least) one NULL
argument always returns NULL .

 The comparison of a NULL value to any second value
returns a result of UNKNOWN.

 A selection returns only those tuples that make the condition
in the WHERE clause TRUE, those with UNKNOWN or
FALSE result do not qualify.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Truth Value Unknown
  Three-valued logic: TRUE, UNKNOWN, FALSE.
  Can think of TRUE = 1, UNKNOWN = ½, FALSE = 0

  AND of two truth values: their minimum.
  OR of two truth values: their maximum.
  NOT of a truth value: 1 – the truth value.

  Examples:
 TRUE AND UNKNOWN = UNKNOWN

FALSE AND UNKNOWN = FALSE
 FALSE OR UNKNOWN = UNKNOWN
 NOT UNKNOWN = UNKNOWN

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Truth Value Unknown
 SELECT *
 FROM Sailors
 WHERE rating < 5 OR rating >= 5;

•  What does this return?
•  Does not return all sailors, but only those with non-

NULL rating.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Null Values
  Field values in a tuple are sometimes unknown (e.g., a

rating has not been assigned) or inapplicable (e.g., no
spouse’s name).
  SQL provides a special value null for such situations.

  The presence of null complicates many issues. E.g.:
  Special operators needed to check if value is/is not null.
  Is rating>8 true or false when rating is equal to null? What

about AND, OR and NOT connectives?
  We need a 3-valued logic (true, false and unknown).
  Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to true.)
  New operators (in particular, outer joins) possible/needed.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Joins

A SQL query walks into a bar and
sees two tables. He walks up to them
and says 'Can I join you?'

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Cartesian Product

  Expressed in FROM clause.
  Forms the Cartesian product of all relations

listed in the FROM clause, in the given order.

 SELECT *
 FROM Sailors, Reserves;

  So far, not very meaningful.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Join
  Expressed in FROM clause and WHERE clause.
  Forms the subset of the Cartesian product of all relations

listed in the FROM clause that satisfies the WHERE
condition:

 SELECT *
 FROM Sailors, Reserves
 WHERE Sailors.sid = Reserves.sid;

  In case of ambiguity, prefix attribute names with relation
name, using the dot-notation.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Join in SQL
  Since joins are so common, SQL provides JOIN as a shorthand.

 SELECT *
 FROM Sailors JOIN Reserves ON
 Sailors.sid = Reserves.sid;

  NATURAL JOIN produces the natural join of the two input
tables, i.e. an equi-join on all attributes common to the input
tables.

 SELECT *
 FROM Sailors NATURAL JOIN Reserves;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Outer Joins

  Typically, there are some dangling tuples in
one of the input tables that have no matching
tuple in the other table.
  Dangling tuples are not contained in the output.

 Outer joins are join variants that do not lose
any information from the input tables.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Left Outer Join
  includes all dangling tuples from the left input

table
 NULL values filled in for all attributes of the

right input table

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Right Outer Join
  includes all dangling tuples from the right input table
  NULL values filled in for all attributes of the right input

table

•  What’s the difference between LEFT and
RIGHT joins?

•  Can one replace the other?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Full Outer Join
  includes all dangling tuples from both input

tables
 NULL values filled in for all attributes of any

dangling tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Aggregation

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Aggregate Operators
  Operates on tuple sets.
  Significant extension of relational

algebra.

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
 FROM Sailors S2)

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Find name and age of the oldest sailor(s)

  The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

  The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Exercise 5.2 ctd.
Consider the following schema.

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog lists the prices charged for parts by Suppliers. Write the
following query in SQL:

1.  Find the average cost of Part 70 (over all suppliers of Part 70).

2.  Find the sids of suppliers who charge more for Part 70 than the
average cost of Part 70.

3.  Find the sids of suppliers who charge more for some part than the
average cost of that part.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

GROUP BY and HAVING

  So far, we’ve applied aggregate operators to all
(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

 Consider: Find the age of the youngest sailor for each
rating level.
  In general, we don’t know how many rating levels

exist, and what the rating values for these levels are!
  Suppose we know that rating values go from 1 to 10;

we can write 10 queries that look like this (!):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Queries With GROUP BY and HAVING

  The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
  The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Conceptual Evaluation

  The cross-product of relation-list is computed, tuples
that fail qualification are discarded, `unnecessary’ fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

  The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!
  In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

 One answer tuple is generated per qualifying group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

  Only S.rating and S.age are
mentioned in the SELECT,
GROUP BY or HAVING clauses;
other attributes `unnecessary’.

  2nd column of result is
unnamed. (Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Answer relation

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors. Step 1.

Step 1: Apply Where clause.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors. Step 2.

Step 2: keep only columns that
appear in SELECT, GROUP
BY, or HAVING

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors. Step 3.

Step 3: sort tuples into groups.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors. Step 4.

Step 4: apply having clause to
eliminate groups.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors. Step 5.

Step 5: generate one answer
tuple for each group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

For each red boat, find the number of
reservations for this boat

 Can we instead remove B.color=‘red’ from the
WHERE clause and add a HAVING clause with
this condition?

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

Find the age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

  Shows HAVING clause can also contain a subquery.
 Compare this with the query where we considered

only ratings with 2 sailors over 18.
 What if HAVING clause is replaced by:

  HAVING COUNT(*) >1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

Find those ratings for which the average
age is the minimum over all ratings

 Aggregate operations cannot be nested! WRONG:
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

  Correct solution (in SQL/92):

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 53

Exercise 5.2 ctd.
Consider the following schema.

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog lists the prices charged for parts by Suppliers.
Write the following queries in SQL:
1.  For every supplier that supplies only green parts, print the

name of the supplier and the total number of parts that she
supplies.

2.  For every supplier that supplies a green part and a red
part, print the name and price of the most expensive part
that she supplies.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

Group By

  In Assignment 2, the following question
requires “group by”:

  “For each character and for each neutral
planet, how much time total did the character
spend on the planet”?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

Integrity Constraints

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Integrity Constraints

 An IC describes conditions that every legal instance
of a relation must satisfy.
  Inserts/deletes/updates that violate IC’s are disallowed.
  Can be used to ensure application semantics (e.g., sid is a

key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

  Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
  Domain constraints: Field values must be of right type.

Always enforced.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 57

General Constraints
  Attribute-based CHECK

  defined in the declaration of an attribute,
  activated on insertion to the corresponding table or

update of attribute.

  Tuple-based CHECK
  defined in the declaration of a table,
  activated on insertion to the corresponding table or

update of tuple.

  Assertion
  defined independently from any table,
  activated on any modification of any table mentioned

in the assertion.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 58

Attribute-based CHECK

  Attribute-based CHECK constraint is part of an
attribute definition.

  Is checked whenever a tuple gets a new value for that
attribute (INSERT or UPDATE). Violating
modifications are rejected.

  CHECK constraint can contain an SQL query
referencing other attributes (of the same or other
tables), if their relations are mentioned in the FROM
clause.

  CHECK constraint is not activated if other attributes
mentioned get new values.

  Most often used to check attribute values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 59

Attribute Check in
SQL

  Useful when
more general
ICs than keys
are involved.

  Can use queries
to express
constraint.

  Constraints can
be named.

CREATE TABLE Sailors
 (sid INTEGER,
 sname CHAR(10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK (rating >= 1
 AND rating <= 10)

CREATE TABLE Reserves
 (sname CHAR(10),
 bid INTEGER,
 day DATE,
 PRIMARY KEY (bid,day),
 CONSTRAINT noInterlakeRes
 CHECK (`Interlake’ <>
 (SELECT B.bname
 FROM Boats B
 WHERE B.bid=bid)))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 60

Tuple-based CHECK
  Tuple-based CHECK constraints can be used to

constrain multiple attribute values within a table.
  Condition can be anything that can appear in a

WHERE clause.
  Same activation and enforcement rules as for

attribute-based CHECK.

CREATE TABLE Sailors
 (sid INTEGER PRIMARY KEY,
 sname CHAR(10),
 previousRating INTEGER,
 currentRating INTEGER,
 age REAL,
 CHECK (currentRating >= previousRating));

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 61

Tuple-based CHECK

  CHECK constraint that refers to other table:
CREATE TABLE Reserves
 (sname CHAR(10),
 bid INTEGER,
 day DATE,
 PRIMARY KEY (bid,day),
 CHECK (‘Interlake’ <>
 (SELECT B.bname
 FROM Boats B
 WHERE B.bid=bid)));

  But: these constraints are invisible to other tables, i.e.
are not checked upon modification of other tables.

Interlake boats cannot
be reserved

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 62

Constraints Over Multiple Relations
CREATE TABLE Sailors
 (sid INTEGER,
 sname CHAR(10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK
 ((SELECT COUNT (S.sid) FROM Sailors S)
 + (SELECT COUNT (B.bid) FROM Boats B) < 100)

  Awkward and
wrong!

  If Sailors is
empty, the
number of Boats
tuples can be
anything!

  ASSERTION is the
right solution;
not associated
with either table.

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT(B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 63

Assertions

  Condition can be anything allowed in a WHERE
clause.

  Constraint is tested whenever any (!) of the
referenced tables is modified.

  Violating modifications are rejectced.
  CHECK constraints are more efficient to implement

than ASSERTIONs.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 64

Assertions

  Number of boats plus number of sailors is < 100.
CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100);

  All relations are checked to comply with above.

  Number of reservations per sailor is < 10.
CREATE ASSERTION notTooManyReservations
CHECK (10 > ALL

 (SELECT COUNT (*)
 FROM Reserves
 GROUP BY sid));

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 65

Exercise 5.10
Consider the folllowing relational schema. An employee can work in more
than one department; the pct_time field of the Works relation shows the
percentage of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct_time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write SQL integrity constraints (domain, key, foreign key or
CHECK constraints or assertions) to ensure each of the
following, independently.
1.  Employees must make a minimum salary of $1000.

2.  A manager must always have a higher salary than any
employee that he or she manages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 66

Theory vs. Practice

 Unfortunately CHECK and ASSERTION are
not well supported by SQL implementation.

 CHECK may not contain queries in SQL
Server and other system.
See http://consultingblogs.emc.com/davidportas/archive/
2007/02/19/Trouble-with-CHECK-Constraints.aspx

 ASSERTION is not supported at all.
http://www.sqlmonster.com/Uwe/Forum.aspx/sql-
server-programming/8870/CREATE-
ASSERTION-with-Microsoft-SQL-Server

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 67

Triggers

  Trigger: procedure that starts automatically if
specified changes occur to the DBMS

  Three parts:
  Event (activates the trigger)
  Condition (tests whether the triggers should run)
  Action (what happens if the trigger runs)

 Mainly related to transaction processing (Ch.
16, CMPT 454)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 68

Triggers

  Synchronization of the Trigger with the
activating statement (DB modification)
  Before
  After
  Instead of
  Deferred (at end of transaction).

 Number of Activations of the Trigger
  Once per modified tuple

(FOR EACH ROW)
  Once per activating statement

(default).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 69

Triggers

CREATE TRIGGER youngSailorUpdate
 AFTER INSERT ON SAILORS /* Event */
 REFERENCING NEW TABLE NewSailors
 FOR EACH STATEMENT
 INSERT /* Action */
 INTO YoungSailors(sid, name, age, rating)
 SELECT sid, name, age, rating
 FROM NewSailors N
 WHERE N.age <= 18;

  This trigger inserts young sailors into a separate table.
  It has no (i.e., an empty, always true) condition.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 70

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
 AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT
 INSERT
 INTO YoungSailors(sid, name, age, rating)
 SELECT sid, name, age, rating
 FROM NewSailors N
 WHERE N.age <= 18

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 71

Triggers

 Options for the REFERENCING clause:
  NEW TABLE: the set (!) of tuples newly inserted

(INSERT).
  OLD TABLE: the set (!) of deleted or old versions

of tuples (DELETE / UPDATE).
  OLD ROW: the old version of the tuple (FOR

EACH ROW UPDATE).
  NEW ROW: the new version of the tuple (FOR

EACH ROW UPDATE).
  The action of a trigger can consist of multiple

SQL statements, surrounded by BEGIN . . .
END.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 72

Triggers

CREATE TRIGGER notTooManyReservations
 AFTER INSERT ON Reserves /* Event */
 REFERENCING NEW ROW NewReservation
 FOR EACH ROW
 WHEN (10 <= (SELECT COUNT(*) FROM Reserves

 WHERE sid =NewReservation.sid)) /* Condition */
 DELETE FROM Reserves R
 WHERE R.sid= NewReservation.sid /* Action */
 AND day=

 (SELECT MIN(day) FROM Reserves R2 WHERE R2.sid=R.sid);

  This trigger makes sure that a sailor has less than 10
reservations, deleting the oldest reservation of a given sailor, if
neccesary.

  It has a non- empty condition (WHEN).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 73

Trigger Syntax
  Unfortunately trigger syntax varies widely among

vendors.
  To make sure that no employee ID is negative:

SQL 99

CREATE TRIGGER checkrange
AFTER INSERT ON Employees
REFERENCING NEW TABLE NT
 WHEN
/* Condition */
(exists (Select * FROM NT
Where NT.eid < 0))
/* Action */
ROLLBACK TRANSACTION

SQL SERVER

CREATE TRIGGER checkrange ON Emp
FOR INSERT
AS
IF
(exists (Select * FROM inserted I
Where I.eid < 0))
BEGIN
 RAISERROR ('Employee ID out of range', 16, 1)
 ROLLBACK TRANSACTION
END

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 74

Triggers vs. General Constraints
  Triggers can be harder to understand.

  Several triggers can be activated by one SQL statement
(arbitrary order!).

  A trigger may activate other triggers (chain activation).
  Triggers are procedural.

  Assertions react on any database modification, trigger
only only specified event.

  Trigger execution cannot be optimized by DBMS.
  Triggers have more applications than constraints.

  monitor integrity constraints,
  construct a log,
  gather database statistics, etc.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 75

Summary

  SQL allows specification of rich integrity
constraints (ICs): attribute-based, tuple-based
CHECK and assertions (table-independent).

 CHECK constraints are activated only by
modifications of the table they are based on,
ASSERTIONs are activated by any
modification that can possibly violate them.

 Choice of the most appropriate method for a
particular IC is up to the DBA.

  Triggers respond to changes in the database.
Can also be used to represent ICs.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 76

Summary
  SQL was an important factor in the early acceptance

of the relational model; more natural than earlier,
procedural query languages.

 Relationally complete; in fact, significantly more
expressive power than relational algebra.

  Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

 Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.
  In practice, users need to be aware of how queries are

optimized and evaluated for best results.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 77

Summary (Contd.)
 NULL for unknown field values brings many

complications
  SQL allows specification of rich integrity

constraints
  Triggers respond to changes in the database

