Relational Algebra

Relational Query Languages

* Query languages: Allow manipulation and retrieval of data from a database.
* Relational model supports simple, powerful QLs:
- Strong formal foundation based on algebra/logic.
- Allows for much optimization.

Formal Relational Query Languages

* Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- Relational Algebra: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe what they want, rather than how to compute it. (Nonoperational, declarative.) Not covered in cours.

Motivation: Relational Algebra

* Mathematically rigorous: the theory behind SQL.
* Relational algebra came first, SQL is an implementation.
* Under the hood: A query processing system translates SQL queries into relational algebra.
> Supports optimization, efficient processing.

Overview

* Notation
* Relational Algebra
* Relational Algebra basic operators.
* Relational Algebra derived operators.

Preliminaries

* A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.

Preliminaries

* Positional vs. named-attribute notation:
- Positional notation
- Ex: Sailor(1,2,3,4)
- easier for formal definitions
- Named-attribute notation
- Ex: Sailor(sid, sname, rating,age)
- more readable
* Advantages/disadvantages of one over the other?

Example Instances

$R 1$| $\underline{\text { sid }}$ | $\underline{\text { bid }}$ | $\underline{\text { day }}$ |
| :---: | :---: | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

\therefore "Sailors" and "Reserves" relations for our examples.

* We' ll use positional or named field notation.
* Assume that names of fields in query results are inherited from names of fields in query input relations.

$S 1$| $\underline{\text { sid }}$ | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

S2 | $\underline{\text { sid }}$ | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

Relational Algebra

Algebra

* In math, algebraic operations like +, -, x, / .
* Operate on numbers: input are numbers, output are numbers.
* Can also do Boolean algebra on sets, using union, intersect, difference.
\star Focus on algebraic identities, e.g.
- $x(y+z)=x y+x z$.
$\%$ (Relational algebra lies between propositional and $1^{\text {stt-order logic.) }}$

Relational Algebra

* Every operator takes one or two relation instances
* A relational algebra expression is recursively defined to be a relation
- Result is also a relation
- Can apply operator to
- Relation from database
- Relation as a result of another operator

Relational Algebra Operations

* Basic operations:
- Selection (σ) Selects a subset of rows from relation.
- Projection (π) Selects a subset of columns from relation.
- Cross-product (\mathbf{X}) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
* Additional derived operations:
- Intersection, join, division, renaming. Not essential, but very useful.
* Since each operation returns a relation, operations can be composed!

Basic Relational Algebra Operations

Projection

* Deletes attributes that are not in projection list.
* Like SELECT in SQL.
* Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
* Projection operator has to eliminate duplicates! (Why??)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

π
 (S2)
 sname,rating

age
35.0
55.5

$\pi_{a g e}(S 2)$

Selection

* Selects rows that satisfy selection condition.
* Like WHERE in SQL.
* No duplicates in result! (Why?)
* Schema of result identical to schema of (only) input relation.
* Selection conditions:
- simple conditions comparing attribute values (variables) and / or constants or
- complex conditions that combine simple conditions using logical connectives AND and OR.

$$
\sigma_{\text {rating }>8}(S 2)
$$

sname	rating
yuppy	9
rusty	10

$\pi_{\text {sname,rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)$

Union, Intersection, Set-Difference

* All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- Corresponding fields have the same type.
* What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

$$
S 1-S 2
$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$S 1 \cup S 2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$S 1 \cap S 2$

Exercise on Union

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Blue blocks (BB)

Stacked(S)

bottom	top
4	2
4	6
6	2

Cross-Product

* Each row of S1 is paired with each row of R1.
* Result schema has one field per field of S1 and R1, with field names inherited if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator: $\quad \rho(C(1 \rightarrow$ sid $1,5 \rightarrow$ sid 2$), S 1 \times R 1)$

Exercise on Cross-Product

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Num ber	shape	holes
4	round	2
5	square	4
6	rectangle	8

Blue blocks (BB)

Stacked(S)

bottom	top
4	2
4	6
6	2

1. Write down 2 tuples in BB x S.
2. What is the cardinality of BB x S?

Derived Operators
 Join and Division

Joins

* Condition Join: $\quad R \bowtie_{c} S=\sigma_{c}(R \times S)$

$($ sid $)$	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

$S 1 \bowtie \bowtie_{S 1 . \text { sid }<R 1 . \text { sid }} R 1$

* Result schema same as that of cross-product.
* Fewer tuples than cross-product, might be able to compute more efficiently. How?
* Sometimes called a theta-join.
* $\Pi-\sigma-x=$ SQL in a nutshell.

Exercise on Join

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Blue blocks (BB)

Num ber	shape	holes
4	round	2
5	square	4
6	rectangle	8

Yellow blocks(YB)

$B B \bowtie{ }_{\text {BB.holes }<\text { YB.holes }} Y B$

Write down 2 tuples in this join.

Joins

* Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

$S 1 \bowtie{ }_{R s i d=S \text { sid }} R 1$

* Result schema similar to cross-product, but only one copy of fields for which equality is specified.
* Natural Join: Equijoin on all common fields. Without specified condition $\quad A \bowtie B$ means the natural join of A and B.

Example for Natural Join

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Blue blocks (BB)

shape	holes
round	2
square	4
rectangle	8

Yellow blocks(YB)

What is the natural join of BB and YB ?

Binary Choice Quiz

* Consider two relations A and B that have exactly the same column headers.
* Is it true that $A \bowtie B=A \cap B$?

Join Examples

Find names of sailors who've reserved boat \#103

* Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
* Solution 2: $\quad \rho$ (Temp1, $\sigma_{b i d=103}$ Reserves)
ρ (Temp2, Temp1 \bowtie Sailors)
$\pi_{\text {sname }}($ Temp 2$)$
* Solution 3: $\pi_{\text {sname }}\left(\sigma_{\text {bid }=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Exercise: Find names of sailors who've reserved

 a red boat* Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }=\text { 'red }}{ }^{\prime}\right.\right.$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }=\text { 'red }}{ }^{\prime}\right.\right.\right.$ Boats $\left.) \bowtie \operatorname{Res}\right) \bowtie$ Sailors $)$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

* Can identify all red or green boats, then find sailors who have reserved one of these boats:

$$
\begin{aligned}
& \rho\left(\text { Tempboats, } \left(\sigma_{\text {color }}=\text { 'red' } v \text { color }='\right.\right. \text { green' } \\
& \left.\pi_{\text {sname }}(\text { Tempboats })\right) \\
& \text { Reserves } \bowtie \text { Sailors })
\end{aligned}
$$

* Can also define Tempboats using union! (How?)
*What happens if \vee is replaced by \wedge in this query?

Exercise: Find sailors who've reserved a red anda green boat

* Previous approach won' t work! Must identify sailors who' ve reserved red boats, sailors who' ve reserved green boats, then find the intersection (note that sid is a key for Sailors):
ρ (Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\prime^{\prime} \text { red' }}\right.\right.$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\rho\left(\right.$ Tempgreen,$\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}{ }^{\prime}\right.\right.$ green' ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Division

* Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

* Typical set-up: A has 2 fields (x, y) that are foreign key pointers, B has 1 matching field (y).
* Then A / B returns the set of x ' s that match all y values in B.
* Example: $A=\operatorname{Friend}(\mathrm{x}, \mathrm{y}) . B=$ set of 354 students. Then A / B returns the set of all x ' s that are friends with all 354 students.

Examples of Division A / B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

A

sno
s1
s2
s3
s4

A/B1

A/B2

B3

sno
s1

A/B3

Find the names of sailors who've reserved all boats

* Uses division; schemas of the input relations to / must be carefully chosen:

$$
\begin{aligned}
& \rho\left(\text { Tempsids, }\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

* To find sailors who have reserved all red boats:

$$
\ldots . . \quad / \pi_{\text {bid }}\left(\sigma_{\text {color }=' r e d}{ }^{\text {Boats })}\right.
$$

Division in General

$\%$ In general, x and y can be any lists of fields; y is the list of fields in B, and (x, y) is the list of fields of A.

* Then A / B returns the set of all x-tuples such that for every y-tuple in B, the tuple (x, y) is in A.

Summary

* The relational model supports rigorously defined query languages that are simple and powerful.
* Relational algebra is more operational.
* Useful as internal representation for query evaluation plans.
* Several ways of expressing a given query; a query optimizer should choose the most efficient version.
* Book has lots of query examples.

Expressing A / B Using Basic Operators

* Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
* Idea: For A / B, compute all x values that are not ‘disqualified’ by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$

$$
A / B: \quad \pi_{x}(A)-\text { all disqualified tuples }
$$

Relational Calculus

Chapter 4, Part B

Relational Calculus

Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC).

* Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
- TRC: Variables range over (i.e., get bound to) tuples.
- DRC: Variables range over domain elements (= field values).
- Both TRC and DRC are simple subsets of first-order logic.
* Expressions in the calculus are called formulas. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to true.

Domain Relational Calculus

* Query has the form:

$$
\{(x 1, x 2, \ldots, x n\rangle \mid p(\langle x 1, x 2, \ldots, x n\rangle)\}
$$

* Answer includes all tuples $\langle x 1, x 2, \ldots, x n\rangle$ that make the formula $p(\langle x 1, x 2, \ldots, x n\rangle)$ be true.
* Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas

- Atomic formula:
- $\langle x 1, x 2, \ldots, x n \backslash$ Rname , or X op Y , or X op constant
- op is one of

$$
<,>,=, \leq, \geq, \neq
$$

* Formula:
- an atomic formula, or
- $\neg p, p \wedge q, p \vee q$, where p and q are formulas, or
- $\exists X(p(X))$, where variable X is free in $\mathrm{p}(\mathrm{X})$, or
- $\forall X(p(X))$, where variable X is free in $p(X)$
* The use of quantifiers $\exists X$ and $\forall X$ is said to bind X.
- A variable that is not bound is free.

Free and Bound Variables

* The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to bind X.
- A variable that is not bound is free.
* Let us revisit the definition of a query:

$$
\{(x 1, x 2, \ldots, x n\rangle \mid p(\langle x 1, x 2, \ldots, x n\rangle)\}
$$

* There is an important restriction: the variables x1, ..., xn that appear to the left of ' \mid ' must be the only free variables in the formula $p(\ldots)$.

Find all sailors with a rating above 7

$$
\{\{I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in \text { Sailors } \wedge T>7\}
$$

* The condition $\langle I, N, T, A\rangle \in$ Sailors ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple.
* The term $\langle I, N, T, A\rangle$ to the left of ' \mid ' (which should be read as such that) says that every tuple $\langle I, N, T, A\rangle$ that satisfies $T>7$ is in the answer.
* Modify this query to answer:
- Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

Find sailors rated >7 who've reserved boat \#103
$\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors $\wedge T>7 \wedge$
$\exists I r, B r, D\{(I r, B r, D\rangle \in$ Reserves $\wedge I r=I \wedge B r=103)\}$

* We have used $\exists \operatorname{Ir}, \operatorname{Br}, \mathrm{D}(\ldots)$ as a shorthand for $\exists \operatorname{Ir}(\exists \operatorname{Br}(\exists D(\ldots)))$
* Note the use of \exists to find a tuple in Reserves that `joins with’ the Sailors tuple under consideration.

Find sailors rated >7 who've reserved a red boat
$\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors $\wedge T>7 \wedge$
$\exists I r, B r, D \|(I r, B r, D\rangle \in$ Reserves $\wedge I r=I \wedge$
$\exists B, B N, C(\langle B, B N, C\rangle \in$ Boats $\wedge B=B r \wedge C=' r e d ') \mid\}$

* Observe how the parentheses control the scope of each quantifier's binding.
* This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Find sailors who've reserved all boats

$\{I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors ^
$\forall B, B N, C|\neg|\langle B, B N, C\rangle \in$ Boats $\rangle \vee$
$\exists I r, B r, D(\langle I r, B r, D\rangle \in$ Reserves $\wedge I=I r \wedge B r=B\rangle))\}$

* Find all sailors I such that for each 3-tuple $\langle B, B N, C\rangle$ either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.

Find sailors who've reserved all boats (again!)
$\{I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors ^
$\forall\langle B, B N, C\rangle \in$ Boats

$$
(\exists\langle I r, B r, D\rangle \in \operatorname{Reserves}(I=I r \wedge B r=B))\}
$$

* Simpler notation, same query. (Much clearer!)
* To find sailors who' ve reserved all red boats:
$\left.\ldots . . .\left(C \nexists^{\prime} \operatorname{red}{ }^{\prime} \vee \exists\{I r, B r, D\rangle \in \operatorname{Reserves}(I=\operatorname{Ir} \wedge B r=B)\right)\right\}$

Unsafe Queries, Expressive Power

* It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called unsafe.
- e.g.,

$$
\{S \mid \neg(S \in \text { Sailors })\}
$$

* It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC; the converse is also true.
* Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/safe calculus.

Summary

* Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
* Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.

