

Relational Algebra

Relational Query Languages

- *Query languages:* Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on algebra/logic.
 - Allows for much optimization.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.) Not covered in cours.

Motivation: Relational Algebra

- Mathematically rigorous: the theory behind SQL.
- Relational algebra came first, SQL is an implementation.
- Under the hood: A query processing system translates SQL queries into relational algebra.
- Supports optimization, efficient processing.

Overview

- Notation
- Relational Algebra
- Relational Algebra basic operators.
- * Relational Algebra derived operators.

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - *Schemas* of input relations for a query are fixed
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.

Preliminaries

Positional vs. named-attribute notation:

- Positional notation
 - Ex: Sailor(1,2,3,4)
 - easier for formal definitions
- Named-attribute notation
 - Ex: Sailor(sid, sname, rating,age)
 - more readable

Advantages/disadvantages of one over the other?

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation.
- Assume that names of fields in query results are inherited from names of fields in query input relations.

R1	sid	bid	day	- /
	22	101	10/10/96	
	58	103	11/12/96	

S1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

S2	sid	sname	rating	age
	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

Relational Algebra

Algebra

- In math, algebraic operations like +, -, x, /.
- Operate on numbers: input are numbers, output are numbers.
- Can also do Boolean algebra on sets, using union, intersect, difference.
- * Focus on **algebraic identities**, e.g.

• x(y+z) = xy + xz.

♦ (Relational algebra lies between propositional and 1st-order logic.)

Relational Algebra

- Every operator takes <u>one or two</u> relation instances
- A relational algebra expression is recursively defined to be a relation
 - Result is also a relation
 - Can apply operator to
 - Relation from database
 - Relation as a result of another operator

Relational Algebra Operations

Basic operations:

- <u>Selection</u> (σ) Selects a subset of rows from relation.
- <u>Projection</u> (π) Selects a subset of columns from relation.
- <u>*Cross-product*</u> (\mathbf{X}) Allows us to combine two relations.
- <u>Set-difference</u> (-) Tuples in reln. 1, but not in reln. 2.
- <u>Union</u> (\bigcup) Tuples in reln. 1 and in reln. 2.
- Additional derived operations:
 - Intersection, <u>join</u>, division, renaming. Not essential, but very useful.
- Since each operation returns a relation, operations can be composed!

Basic Relational Algebra Operations

Projection

- Deletes attributes that are not in projection list.
- ✤ Like SELECT in SQL.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??)

		00
sname	rating	
yuppy	9	
lubber	8	
guppy	5	
rusty	10	

 $\pi_{sname,rating}(S2)$

Selection

- Selects rows that satisfy *selection condition*.
- ✤ Like WHERE in SQL.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Selection conditions:
 - simple conditions comparing attribute values (variables) and / or constants or
 - complex conditions that combine simple conditions using logical connectives AND and OR.

			Ko	. /
sid	sname	rating	age	
28	yuppy	9	35.0	/
58	rusty	10	35.0	

 $\sigma_{rating>8}^{(S2)}$

sname	rating
yuppy	9
rusty	10

 $\pi_{sname, rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - Corresponding fields have the same type.
- What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1 - S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age	
31	lubber	8	55.5	
58	rusty	10	35.0	
$S1 \cap S2$				

 \bigcirc

Exercise on Union

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Blue blocks (BB)

Stacked(S)

bottom	top
4	2
4	6
6	2

Num ber	shape	holes
4	round	2
5	square	4
6	rectangle	8

Yellow blocks(YB)

- 1. Which tables are unioncompatible?
- 2. What is the result of the possible unions?

✤ Each row of S1 is paired with each row of R1.

Cross-Product

- * Result schema has one field per field of S1 and R1, with field names inherited if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• <u>Renaming operator</u>: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Exercise on Cross-Product

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Num ber	shape	holes
4	round	2
5	square	4
6	rectangle	8

Blue blocks (BB)

Stacked(S)

bottom	top
4	2
4	6
6	2

- 1. Write down 2 tuples in BB x S.
- 2. What is the cardinality of BB x S?

Derived Operators Join and Division

Joins

• Condition Join:
$$R \bowtie_{c} S = \sigma_{c} (R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$

- ✤ *Result schema* same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently. How?
- ✤ Sometimes called a *theta-join*.
- ♦ Π σ x = SQL in a nutshell.

Exercise on Join

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

Num ber	shape	holes
4	round	2
5	square	4
6	rectangle	8

Blue blocks (BB)

Yellow blocks(YB)

$$BB \bowtie BB.holes < YB.holes$$

Write down 2 tuples in this join.

Joins

✤ <u>Equi-Join</u>: A special case of condition join where the condition *c* contains only *equalities*.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

 $S1 \bowtie Rsid = S.sid^{R1}$

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * <u>Natural Join</u>: Equijoin on *all* common fields. Without specified condition $A \bowtie B$ means the natural join of A and B.

Example for Natural Join

Num ber	shape	holes
1	round	2
2	square	4
3	rectangle	8

shape	holes
round	2
square	4
rectangle	8

Blue blocks (BB)

Yellow blocks(YB)

What is the natural join of BB and YB?

Binary Choice Quiz

- Consider two relations A and B that have exactly the same column headers.
- ♦ Is it true that $A \bowtie B = A \cap B$?

Join Examples

Find names of sailors who've reserved boat #103

* Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{ Sailors})$

* Solution 2: ρ (*Templ*, $\sigma_{bid=103}$ Reserves)

 ρ (*Temp2*, *Temp1* \bowtie *Sailors*)

 π_{sname} (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

 \subset

Exercise: Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

 $\pi_{sname}((\sigma_{color='red'}^{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors})$

A more efficient solution:

 $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie \operatorname{Res}) \bowtie Sailors)$

A query optimizer can find this, given the first solution!

 \sim

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who have reserved one of these boats:

 $\rho (Tempboats, (\sigma_{color ='red' \lor color ='green'}, Boats))$

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

Can also define Tempboats using union! (How?)
What happens if V is replaced by A in this query?

 \bigcirc

Exercise: Find sailors who've reserved a red <u>and a</u> green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho$$
 (Tempred, $\pi_{sid}((\sigma_{color='red'}, Boats) \bowtie \text{Reserves}))$

 ρ (Tempgreen, $\pi_{sid}((\sigma_{color = green'} Boats) \bowtie \text{Reserves}))$

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Division

- Not supported as a primitive operator, but useful for expressing queries like: *Find sailors who have reserved <u>all</u> boats.*
- Typical set-up: A has 2 fields (x,y) that are foreign key pointers, B has 1 matching field (y).
- Then A/B returns the set of x's that match all y values in B.
- Example: A = Friend(x,y). B = set of 354 students. Then A/B returns the set of all x's that are friends with all 354 students.

 \bigcirc

Examples of Division A/B

sno	pno	
s1	p1	
s1	p2	
s1	р3	
s1	p4	
s2	p1	
s2	p2	
s3	p2	
s4	p2	
s4	p4	

A

pno p2 B1	pno p2 p4 <i>B2</i>	pno p1 p2 p4
sno		<i>B3</i>
s1		
s2	sno	
s3	s1	sno
s4	s4	s1
A/B1	A/B2	A/B3

Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho (Tempsids, (\pi_{sid, bid} \text{Reserves}) / (\pi_{bid} Boats))$$

 $\pi_{sname} (Tempsids \bowtie Sailors)$

* To find sailors who have reserved all **red** boats:

$$/\pi_{bid}(\sigma_{color='red'}Boats)$$

 \subset

Division in General

- In general, x and y can be any lists of fields; y is the list of fields in B, and (x,y) is the list of fields of A.
- Then A/B returns the set of all x-tuples such that for every y-tuple in B, the tuple (x,y) is in A.

Summary

- The relational model supports rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational.
- Useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.
- Book has lots of query examples.

Expressing A/B Using Basic Operators

Division is not essential op; just a useful shorthand.

- (Also true of joins, but joins are so common that systems implement joins specially.)
- *Idea*: For *A*/*B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified *x* values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B: $\pi_{\chi}(A)$ – all disqualified tuples

 \bigcirc

Relational Calculus

Chapter 4, Part B

Relational Calculus

- Comes in two flavors: <u>Tuple relational calculus</u> (TRC) and <u>Domain relational calculus</u> (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - <u>TRC</u>: Variables range over (i.e., get bound to) *tuples*.
 - <u>DRC</u>: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- * Expressions in the calculus are called *formulas*. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Domain Relational Calculus

* *Query* has the form: $\left[\left\langle x1, x2, ..., xn\right\rangle \mid p\left(\left\langle x1, x2, ..., xn\right\rangle\right)\right]$

- * *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p[\langle x1, x2, ..., xn \rangle]$ be *true*.
- * Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas

Atomic formula:

- $\langle x1, x2, ..., xn \rangle \in Rname$, or X op Y, or X op constant op is one of $\langle , \rangle, =, \leq, \geq, \neq$

* Formula:

- an atomic formula, or
- $\neg p, p \land q, p \lor q$, where p and q are formulas, or
- $\exists X(p(X))$, where variable X is *free* in p(X), or
- $\forall X(p(X))$, where variable X is *free* in p(X)
- ♦ The use of quantifiers $\exists X$ and $\forall X$ is said to <u>bind</u> X.
 - A variable that is **not bound** is **free**.

Free and Bound Variables

- ◆ The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to <u>bind</u> X.
 - A variable that is **not bound** is <u>free</u>.
- * Let us revisit the definition of a **query**:

$$\left\{ \left\langle x1, x2, ..., xn \right\rangle \mid p\left(\left\langle x1, x2, ..., xn \right\rangle \right) \right\}$$

There is an important restriction: the variables x1, ..., xn that appear to the left of `|' must be the *only* free variables in the formula p(...).

Find all sailors with a rating above 7 $\left|\langle I,N,T,A \rangle | \langle I,N,T,A \rangle \in Sailors \land T > 7\right\}$

- ◆ The condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables *I*, *N*, *T* and *A* are bound to fields of the same Sailors tuple.
- * The term $\langle I, N, T, A \rangle$ to the left of `|' (which should be read as *such that*) says that every tuple $\langle I, N, T, A \rangle$ that satisfies T>7 is in the answer.
- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

 \bigcirc

Find sailors rated > 7 who've reserved boat #103

$$\left\{ \left\langle I, N, T, A \right\rangle \middle| \left\langle I, N, T, A \right\rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\left\langle Ir, Br, D \right\rangle \in Reserves \land Ir = I \land Br = 103 \right) \right\}$$

* We have used $\exists Ir, Br, D(...)$ as a shorthand for $\exists Ir(\exists Br(\exists D(...)))$

♦ Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

 \bigcirc

Find sailors rated > 7 who've reserved a red boat

$$\left\{ \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land \\ \exists B, BN, C \left(\langle B, BN, C \rangle \in Boats \land B = Br \land C = 'red' \right) \right\}$$

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Find sailors who've reserved all boats

$$\left\{ \left\langle I, N, T, A \right\rangle \middle| \left\langle I, N, T, A \right\rangle \in Sailors \land \\ \forall B, BN, C \left(\neg \left(\left\langle B, BN, C \right\rangle \in Boats \right) \lor \\ \left(\exists Ir, Br, D \left(\left\langle Ir, Br, D \right\rangle \in Reserves \land I = Ir \land Br = B \right) \right) \right\} \right\}$$

Find all sailors *I* such that for each 3-tuple (*B*,*BN*,*C*) either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor *I* has reserved it.

Find sailors who 've reserved all boats (again!)

$$\left\{ \left\langle I, N, T, A \right\rangle \middle| \left\langle I, N, T, A \right\rangle \in Sailors \land \\ \forall \left\langle B, BN, C \right\rangle \in Boats \\ \left(\exists \left\langle Ir, Br, D \right\rangle \in \operatorname{Reserves} \left[I = Ir \land Br = B \right] \right) \right\}$$

Simpler notation, same query. (Much clearer!)To find sailors who' ve reserved all red boats:

....
$$(C \neq 'red' \lor \exists \langle Ir, Br, D \rangle \in \operatorname{Reserves}(I = Ir \land Br = B))$$

Unsafe Queries, Expressive Power

 It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.

• e.g.,
$$\{S \mid \neg (S \in Sailors)\}$$

- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC; the converse is also true.
- <u>Relational Completeness</u>: Query language (e.g., SQL) can express every query that is expressible in relational algebra/safe calculus.

 \sim

Summary

- Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.