
1

Relational Algebra

2

Relational Query Languages

v  Query languages: Allow manipulation and retrieval
of data from a database.

v  Relational model supports simple, powerful QLs:
§  Strong formal foundation based on algebra/logic.
§  Allows for much optimization.

3

Formal Relational Query Languages
v  Two mathematical Query Languages form

the basis for “real” languages (e.g. SQL), and
for implementation:
§  Relational Algebra: More operational, very useful

for representing execution plans.
§  Relational Calculus: Lets users describe what they

want, rather than how to compute it. (Non-
operational, declarative.) Not covered in cours.

4

Motivation: Relational Algebra

v  Mathematically rigorous: the theory behind
SQL.

v  Relational algebra came first, SQL is an
implementation.

v  Under the hood: A query processing system
translates SQL queries into relational algebra.

Ø  Supports optimization, efficient processing.

5

Overview

v  Notation
v  Relational Algebra
v  Relational Algebra basic operators.
v  Relational Algebra derived operators.

6

Preliminaries

v  A query is applied to relation instances, and the
result of a query is also a relation instance.
§  Schemas of input relations for a query are fixed
§  The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

7

Preliminaries

v  Positional vs. named-attribute notation:
§  Positional notation

•  Ex: Sailor(1,2,3,4)
•  easier for formal definitions

§  Named-attribute notation
•  Ex: Sailor(sid, sname, rating,age)
•  more readable

v  Advantages/disadvantages of one over the
other?

8

Example Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

v  “Sailors” and “Reserves”
relations for our examples.

v  We’ll use positional or
named field notation.

v  Assume that names of fields
in query results are
inherited from names of
fields in query input
relations.

9

Relational Algebra

10

Algebra
v  In math, algebraic operations like +, -, x, /.
v  Operate on numbers: input are numbers,

output are numbers.
v  Can also do Boolean algebra on sets, using

union, intersect, difference.
v  Focus on algebraic identities, e.g.

§  x (y+z) = xy + xz.
v  (Relational algebra lies between propositional and 1st-order logic.)

3

4
7

11

Relational Algebra
v  Every operator takes one or two relation

instances
v  A relational algebra expression is recursively

defined to be a relation
§  Result is also a relation
§  Can apply operator to

• Relation from database
• Relation as a result of another operator

12

Relational Algebra Operations

v  Basic operations:
§  Selection () Selects a subset of rows from relation.
§  Projection () Selects a subset of columns from relation.
§  Cross-product () Allows us to combine two relations.
§  Set-difference () Tuples in reln. 1, but not in reln. 2.
§  Union () Tuples in reln. 1 and in reln. 2.

v  Additional derived operations:
§  Intersection, join, division, renaming.

Not essential, but very useful.

v  Since each operation returns a relation, operations
can be composed!

σ
π

−
×

∪

13

Basic Relational Algebra Operations

14

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ()2

age
35.0
55.5

πage S()2

v  Deletes attributes that are not in
projection list.

v  Like SELECT in SQL.
v  Schema of result contains exactly

the fields in the projection list,
with the same names that they
had in the (only) input relation.

v  Projection operator has to
eliminate duplicates! (Why??)

15

Selection

σ rating S
>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σsname rating rating S, (())
>8 2

v  Selects rows that satisfy selection
condition.

v  Like WHERE in SQL.
v  No duplicates in result! (Why?)
v  Schema of result identical to

schema of (only) input relation.
v  Selection conditions:

§  simple conditions comparing
attribute values (variables)
and / or constants or

§  complex conditions that
combine simple conditions
using logical connectives
AND and OR.

16

Union, Intersection, Set-Difference

v  All of these operations take
two input relations, which
must be union-compatible:
§  Same number of fields.
§  Corresponding fields

have the same type.
v  What is the schema of result?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

17

Exercise on Union
Num
ber

shape holes

1 round 2

2 square 4
3 rectangle 8

Blue blocks (BB)

Num
ber

shape holes

4 round 2

5 square 4
6 rectangle 8

bottom top

4 2

4 6
6 2

Stacked(S)

1.  Which tables are union-
compatible?

2.  What is the result of the
possible unions?

Yellow blocks(YB)

18

Cross-Product
v  Each row of S1 is paired with each row of R1.
v  Result schema has one field per field of S1 and R1,

with field names inherited if possible.
§  Conflict: Both S1 and R1 have a field called sid.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×§  Renaming operator:

19

Exercise on Cross-Product
Num
ber

shape holes

1 round 2

2 square 4
3 rectangle 8

Blue blocks (BB)

Num
ber

shape holes

4 round 2

5 square 4
6 rectangle 8

bottom top

4 2

4 6
6 2

Stacked(S)

1.  Write down 2 tuples in
BB x S.

2.  What is the cardinality
of BB x S?

20

Derived Operators
Join and Division

21

Joins
v  Condition Join:

v  Result schema same as that of cross-product.
v  Fewer tuples than cross-product, might be able to compute

more efficiently. How?
v  Sometimes called a theta-join.
v  Π-σ-x = SQL in a nutshell.

R c S c R S▹◃ = ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

11 .1.1 RS sidRsidS <
◃▹

22

Exercise on Join
Num
ber

shape holes

1 round 2

2 square 4
3 rectangle 8

Blue blocks (BB)

Num
ber

shape holes

4 round 2

5 square 4
6 rectangle 8

Yellow blocks(YB)

YBBB holesYBholesBB .. <
◃▹

Write down 2 tuples in this join.

23

Joins
v  Equi-Join: A special case of condition join where

the condition c contains only equalities.

v  Result schema similar to cross-product, but only

one copy of fields for which equality is specified.
v  Natural Join: Equijoin on all common fields.

Without specified condition
means the natural join of A and B.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

€

S1 R.sid =S.sid R1

€

A B

24

Example for Natural Join

Num
ber

shape holes

1 round 2

2 square 4
3 rectangle 8

Blue blocks (BB)

shape holes

round 2

square 4
rectangle 8

Yellow blocks(YB)

What is the natural join of BB and YB?

25

Binary Choice Quiz

v  Consider two relations A and B that have
exactly the same column headers.

v  Is it true that A▹◃ B=A∩B?

26

Join Examples

27

Find names of sailors who’ve reserved boat #103

v  Solution 1: π σsname bid serves Sailors((Re))
=103 ▹◃

v  Solution 2: ρ σ(, Re)Temp servesbid1 103=

ρ (,)Temp Temp Sailors2 1▹◃

π sname Temp()2

v  Solution 3: π σsname bid serves Sailors((Re))
=103 ▹◃

28

Exercise: Find names of sailors who’ve reserved
a red boat

v  Information about boat color only available in
Boats; so need an extra join:

π σsname color red Boats serves Sailors((' ') Re)
=

▹◃ ▹◃

v  A more efficient solution:

π π π σsname sid bid color red Boats s Sailors(((' ') Re))
=

▹◃ ▹◃

A query optimizer can find this, given the first solution!

29

Find sailors who’ve reserved a red or a green boat

v  Can identify all red or green boats, then find
sailors who have reserved one of these boats:

ρ σ(, (' ' ' '))Tempboats color red color green Boats= ∨ =

π sname Tempboats serves Sailors(Re)▹◃ ▹◃

v  Can also define Tempboats using union! (How?)

v  What happens if is replaced by in this query? ∨ ∧

30

Exercise: Find sailors who’ve reserved a red and a
green boat

v  Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((' ') Re))Tempred sid color red Boats serves
=

▹◃

π sname Tempred Tempgreen Sailors(())∩ ▹◃

ρ π σ(, ((' ') Re))Tempgreen sid color green Boats serves
=

▹◃

31

Division
v  Not supported as a primitive operator, but useful for

expressing queries like:
 Find sailors who have reserved all boats.

v  Typical set-up: A has 2 fields (x,y) that are foreign key
pointers, B has 1 matching field (y).

v  Then A/B returns the set of x’s that match all y values
in B.

v  Example: A = Friend(x,y). B = set of 354 students.
Then A/B returns the set of all x’s that are friends
with all 354 students.

32

Examples of Division A/B
sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

33

Find the names of sailors who’ve reserved all boats

v  Uses division; schemas of the input relations
to / must be carefully chosen:

ρ π π(, (, Re) / ())Tempsids sid bid serves bid Boats

π sname Tempsids Sailors()▹◃

v  To find sailors who have reserved all red boats:

/ π bid (σ color='red 'Boats)
.....

34

Division in General
v  In general, x and y can be any lists of fields; y is the

list of fields in B, and (x,y) is the list of fields of A.
v  Then A/B returns the set of all x-tuples such that for

every y-tuple in B, the tuple (x,y) is in A.

/

35

Summary

v  The relational model supports rigorously
defined query languages that are simple and
powerful.

v  Relational algebra is more operational.
v  Useful as internal representation for query

evaluation plans.
v  Several ways of expressing a given query; a

query optimizer should choose the most
efficient version.

v  Book has lots of query examples.

36

Expressing A/B Using Basic Operators

v  Division is not essential op; just a useful shorthand.
§  (Also true of joins, but joins are so common that systems

implement joins specially.)

v  Idea: For A/B, compute all x values that are not
`disqualified’ by some y value in B.
§  x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values:

 A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

37

Relational Calculus

Chapter 4, Part B

38

Relational Calculus

v  Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

v  Calculus has variables, constants, comparison ops,
logical connectives and quantifiers.
§  TRC: Variables range over (i.e., get bound to) tuples.
§  DRC: Variables range over domain elements (= field values).
§  Both TRC and DRC are simple subsets of first-order logic.

v  Expressions in the calculus are called formulas. An
answer tuple is essentially an assignment of
constants to variables that make the formula
evaluate to true.

39

Domain Relational Calculus

v  Query has the form:
x x xn p x x xn1 2 1 2, ,..., | , ,...,⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

v  Answer includes all tuples that
 make the formula be true.

x x xn1 2, ,...,
p x x xn1 2, ,...,⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

v  Formula is recursively defined, starting with
 simple atomic formulas (getting tuples from
 relations or making comparisons of values),
 and building bigger and better formulas using
 the logical connectives.

40

DRC Formulas
v  Atomic formula:

§  , or X op Y, or X op constant
§  op is one of

v  Formula:
§  an atomic formula, or
§  , where p and q are formulas, or
§  , where variable X is free in p(X), or
§  , where variable X is free in p(X)

v  The use of quantifiers and is said to bind X.
§  A variable that is not bound is free.

x x xn Rname1 2, ,..., ∈
< > = ≤ ≥ ≠, , , , ,

¬ ∧ ∨p p q p q, ,
∃X p X(())
∀X p X(())

∃X ∀ X

41

Free and Bound Variables

v  The use of quantifiers and in a formula is
said to bind X.
§  A variable that is not bound is free.

v  Let us revisit the definition of a query:

∃X ∀ X

x x xn p x x xn1 2 1 2, ,..., | , ,...,⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

v  There is an important restriction: the variables
x1, ..., xn that appear to the left of `|’ must be
the only free variables in the formula p(...).

42

Find all sailors with a rating above 7

v  The condition ensures that
the domain variables I, N, T and A are bound to
fields of the same Sailors tuple.

v  The term to the left of `|’ (which should
be read as such that) says that every tuple
that satisfies T>7 is in the answer.

v  Modify this query to answer:
§  Find sailors who are older than 18 or have a rating under

9, and are called ‘Joe’.

I N T A I N T A Sailors T, , , | , , , ∈ ∧ >⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
7

I N T A Sailors, , , ∈

I N T A, , ,
I N T A, , ,

43

Find sailors rated > 7 who’ve reserved boat #103

v  We have used as a shorthand
for

v  Note the use of to find a tuple in Reserves that

`joins with’ the Sailors tuple under consideration.

I N T A I N T A Sailors T, , , | , , , ∈ ∧ > ∧⎧
⎨
⎪

⎩⎪
7

∃ ∈ ∧ = ∧ =⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎫

⎬
⎪

⎭⎪
Ir Br D Ir Br D serves Ir I Br, , , , Re 103

()∃ Ir Br D, , . . .
()()()∃ ∃ ∃Ir Br D . . .

∃

44

Find sailors rated > 7 who’ve reserved a red boat

v  Observe how the parentheses control the scope of
each quantifier’s binding.

v  This may look cumbersome, but with a good user
interface, it is very intuitive. (MS Access, QBE)

I N T A I N T A Sailors T, , , | , , , ∈ ∧ > ∧⎧
⎨
⎪

⎩⎪
7

∃ ∈ ∧ = ∧⎛

⎝

⎜
⎜Ir Br D Ir Br D serves Ir I, , , , Re

∃ ∈ ∧ = ∧ =⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟

⎫

⎬
⎪

⎭
⎪

B BN C B BN C Boats B Br C red, , , , ' '

45

Find sailors who’ve reserved all boats

v  Find all sailors I such that for each 3-tuple
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor I has reserved it.

I N T A I N T A Sailors, , , | , , , ∈ ∧⎧
⎨
⎪

⎩⎪

∀ ¬ ∈ ∨⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

B BN C B BN C Boats, , , ,

∃ ∈ ∧ = ∧ =⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟⎟

⎞

⎠

⎟
⎟
⎟

⎫

⎬
⎪

⎭
⎪

Ir Br D Ir Br D serves I Ir Br B, , , , Re

B BN C, ,

46

Find sailors who’ve reserved all boats
(again!)

v  Simpler notation, same query. (Much clearer!)
v  To find sailors who’ve reserved all red boats:

I N T A I N T A Sailors, , , | , , , ∈ ∧⎧
⎨
⎪

⎩⎪

∀ ∈B BN C Boats, ,

∃ ∈ = ∧ =⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎫

⎬
⎪

⎭⎪
Ir Br D serves I Ir Br B, , Re

C red Ir Br D serves I Ir Br B≠ ∨ ∃ ∈ = ∧ =⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎫

⎬
⎪

⎭⎪
' ' , , Re.....

47

Unsafe Queries, Expressive Power

v  It is possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.
§  e.g.,

v  It is known that every query that can be expressed
in relational algebra can be expressed as a safe
query in DRC; the converse is also true.

v  Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible
in relational algebra/safe calculus.

S S Sailors| ¬ ∈⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

48

Summary

v  Relational calculus is non-operational, and
users define queries in terms of what they
want, not in terms of how to compute it.
(Declarativeness.)

v  Algebra and safe calculus have same
expressive power, leading to the notion of
relational completeness.

