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Motivation: Evaluating Queries 

v  The same query can be evaluated in different 
ways. 

v  The evaluation strategy (plan) can make 
orders of magnitude of difference. 

v  Query efficiency is one of the main areas 
where DBMS systems compete with each 
other. 

v  Person-decades of development, secret 
details. 
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Overview of Query Evaluation 

v  Plan:  Tree of R.A. ops, with choice of alg for each op. 
§  Each operator typically implemented using a `pull’ 

interface: when an operator is `pulled’ for the next 
output tuples, it `pulls’ on its inputs and computes them. 

§  Much like cursor/iterator. 
v  Two main issues in query optimization: 

§  For a given query, what plans are considered? 
• Algorithm to search plan space for cheapest (estimated) plan. 

§  How is the cost of a plan estimated? 
v  Ideally: Want to find best plan.  Practically: Avoid 

worst plans! 
v  We will study the System R approach (IBM). 
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Some Common Techniques 

v  Algorithms for evaluating relational operators 
use some simple ideas extensively: 
§  Indexing:  Can use WHERE conditions and indexes 

to retrieve small set of tuples (selections, joins) 
§  Iteration:  Sometimes, faster to scan all tuples even if 

there is an index. (And sometimes, we can scan the 
data entries in an index instead of the table itself.) 

§  Partitioning: By using sorting or hashing on a sort 
key, we can partition the input tuples and replace 
an expensive operation by similar operations on 
smaller inputs. 

* Watch for these techniques as we discuss query evaluation! 
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Examples 
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Example Relations 

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Sailors 

Reservations 
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Query Plan Example 

v  RA Tree: expression tree. 
v  Each leaf is a schema table. 
v  Internal nodes: relational algebra 

operator applied to children. 
v  Full plan labels each internal node with 

implementation strategy. 

SELECT  S.sname 
FROM  Reserves R, Sailors S 
WHERE  R.sid=S.sid AND  
    R.bid=100 AND S.rating>5 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname RA Tree: 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

(Simple Nested Loops) 

(On-the-fly) 

(On-the-fly) Plan: 
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Alternative Plan 

Reserves Sailors 

sid=sid 

bid=100  

sname (On-the-fly) 

rating > 5 
(Scan; 
write to  
temp T1) 

(Scan; 
write to 
temp T2) 

(Sort-Merge Join) 

v  Goal of optimization:  
To find efficient 
plans that compute 
the same answer.  
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Computing Relational Operators 
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Access Paths 
v  An access path is a method of retrieving tuples: 

§  File scan, or index that matches a selection (in the query)  

v  A tree index matches (a conjunction of) terms that 
involve only attributes in a prefix of the search key. 
§  E.g., Tree index on <a, b, c>  matches the selection a=5 

AND b=3, and a=5 AND b>6, but not b=3. 

v  A hash index matches (a conjunction of) terms that 
has a term attribute = value for every attribute in the 
search key of the index. 
§  E.g., Hash index on <a, b, c>  matches a=5 AND b=3 AND 

c=5; but it does not match b=3, or a=5 AND b=3, or a>5 
AND b=3 AND c=5. 
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Exercise 12.4 
Consider the following schema with the Sailors relation: 
Sailors(sid: integer, sname: string, rating: integer, age: 

real)  
v  For each of the following indexes, list whether the 

index matches the given selection conditions.  
1.  A hash index on the search key <Sailors.sid>  

a.  σsid<50,000 (Sailors)  
b.  σsid=50,000 (Sailors) 

2.  A B+-tree on the search key <Sailors.sid> 
a.  σsid<50,000 (Sailors)  
b.  σsid=50,000 (Sailors) 
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Statistics and Catalogs 

v  Need information about the relations and indexes 
involved.  Catalogs typically contain at least: 
§  # tuples (NTuples) and # pages (NPages) for each relation. 
§  # distinct key values (NKeys) and NPages for each index. 
§  Index height, low/high key values (Low/High) for each 

tree index. 

v  Catalogs updated periodically. 
§  Updating whenever data changes is too expensive; lots of 

approximation anyway, so slight inconsistency ok. 

v  More detailed information (e.g., histograms of the 
values in some field) are sometimes stored. 
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Selection and Projection 
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One Approach to Selections 

v  Estimate the most selective access path, retrieve tuples 
using it, and apply any remaining terms that don’t 
match the index: 
§  Most selective access path: An index or file scan that requires 

the fewest page I/Os. 
§  Terms that match this index reduce the number of tuples 

retrieved; other terms are used to discard some retrieved 
tuples, but do not affect number of tuples/pages fetched. 

§  Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree 
index on  day can be used; then, bid=5 and sid=3 must be 
checked for each retrieved tuple.  Similarly, a hash index on 
<bid, sid> could be used; day<8/9/94 must then be checked.  
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Using an Index for Selections 

v  Cost depends on #qualifying tuples, and 
clustering. 
§  Cost of finding qualifying data entries (typically small) 

plus cost of retrieving records (could be large w/o 
clustering). 

§  In example, assume that about 10% of tuples qualify 
(100 pages, 10000 tuples).  With a clustered index, cost 
is little more than 100 I/Os; if unclustered, up to 10000 
I/Os! 

SELECT  * 
FROM     Reserves R 
WHERE   R.rname < ‘C%’ 
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Projection 

v  The expensive part is removing duplicates. 
§  SQL systems don’t remove duplicates unless the keyword DISTINCT 

is specified in a query. 
v  Sorting Approach:  Sort on <sid, bid> and remove duplicates. 

(Can optimize this by dropping unwanted information while 
sorting.) 

v  Hashing Approach: Hash on <sid, bid> to create partitions.  
Load partitions into memory one at a time, build in-memory 
hash structure, and eliminate duplicates. 

v  If there is an index with both R.sid and R.bid in the search key, 
may be cheaper to sort data entries! 

SELECT   DISTINCT 
               R.sid, R.bid 
FROM     Reserves R 
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The Biggie: Join 

Nested Loops 
Sort-Merge 
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Nested Loops: Flowchart 

v  From http://www.dbsophic.com/physical-join-operators-in-sql-
server-nested-loops/. 
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Join: Index Nested Loops 

v  If there is an index on the join column of one relation (say S), 
can make it the inner and exploit the index. 
§  Cost:  Pages_in_r *  

( 1 + tup_per_page* cost of finding matching S tuples)  

v  For each R tuple, cost of probing S index is about 1.2 
for hash index, 2-4 for B+ tree.  Cost of then finding S 
tuples (assuming alt. (2) or (3) for data entries) 
depends on clustering. 
§  Clustered index on S:  1 I/O (typical) for each R tuple,  

unclustered: up to 1 I/O per matching S tuple.  

foreach tuple r in R do 
 foreach tuple s in S where ri == sj  do 
  add <r, s> to result 
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Examples of Index Nested Loops 

v  Hash-index (Alt. 2) on sid of Sailors (as inner): 
§  Scan Reserves:  1000 page I/Os, 100*1000 tuples. 
§  For each Reserves tuple:  1.2 I/Os to get data entry in index, 

plus 1 I/O to get (the exactly one) matching Sailors tuple.  
Total:  220,000 I/Os for finding matches. 

v  Hash-index (Alt. 2) on sid of Reserves (as inner): 
§  Scan Sailors:  500 page I/Os, 80*500 tuples. 
§  For each Sailors tuple:  1.2 I/Os to find index page with 

data entries, plus cost of retrieving matching Reserves 
tuples.  Assuming uniform distribution, 2.5 reservations 
per sailor (100,000 R/ 40,000 S).  Cost of retrieving them  is 
1 or 2.5 I/Os depending on whether the index is clustered. 
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Exercise 14.4.1 
v  Consider the join R.A with S.b given the following 

information. The cost measure is the number of page 
I/Os, ignoring the cost of writing out the result. 
§  Relation R contains 10,000 tuples and has 10 tuples per page. 
§  Relation S contains 2000 tuples, also 10 tuples per page. 
§  Attribute b is the primary key for S. 
§  Both relations are stored as heap files. No indexes are 

available. 
v  What is the cost of joining R and S using nested loop 

join? R is the outer relation. 
v  How many tuples does the join of R and S produce, 

at most, and how many pages are required to store 
the result of the join back on disk? 
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Join: Sort-Merge (R     S) 

v  Sort R and S on the join column, then scan them to do 
a ``merge’’ (on join col.), and output result tuples. 
§  Advance scan of R until current R-tuple >= current S tuple, 

then advance scan of S until current S-tuple >= current R 
tuple; do this until current R tuple = current S tuple. 

§  At this point, all R tuples with same value in Ri (current R 
group) and all S tuples with same value in Sj (current S 
group) match;  output <r, s> for all pairs of such tuples. 

§  Then resume scanning R and S. 

v  R is scanned once; each S group is scanned once per 
matching R tuple.   


i=j 
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Example of Sort-Merge Join 

v  Cost:  sort + scan = 
v  (M log M + N log N) + (M+N) [sid is key] 

§  The cost of scanning, M+N, could be M*N (very unlikely!) 
v  With enough buffer pages, both Reserves and Sailors can be 

sorted in 2 passes; total join cost: 7500.  

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin
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Exercise 14.4.3 

v  Consider the join R.A with S.b given the following 
information. The cost measure is the number of page 
i/Os, ignoring the cost of writing out the result. 
§  Relation R contains 10,000 tuples and has 10 tuples per page. 
§  Relation S contains 2000 tuples, also 10 tuples per page. 
§  Attribute b is the primary  key for S. 
§  Both relations are stored as heap files. No indexes are 

available. 
v  What is the cost of joining R and S using a sort-merge 

join? Assume that the number of I/Os for sorting a 
table T is 4 *pages_in_T . 
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Query Planning 
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Highlights of System R Optimizer 

v  Impact: 
§  Most widely used currently; works well for < 10 joins. 

v  Cost estimation:  NP-hard, approximate art at best. 
§  Statistics, maintained in system catalogs, used to estimate 

cost of operations and result sizes. 
§  Considers combination of CPU and I/O costs. 

v  Plan Space:  Too large, must be pruned. 
§  Only the space of left-deep plans is considered. (see text) 
§  Cartesian products avoided. 
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Cost Estimation 

v  For each plan considered, must estimate cost: 
§  Must estimate cost of each operation in plan tree. 

• Depends on input cardinalities. 
• We’ve already discussed how to estimate the cost of 

operations (sequential scan, index scan, joins, etc.) 

§  Must also estimate size of result for each operation 
in tree! 

• Use information about the input relations. 
• For selections and joins, assume independence of 

predicates. 
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Size Estimation and Reduction Factors 

v  Consider a query block: 
v  Maximum # tuples in result is the product of the 

cardinalities of relations in the FROM clause. 
v  Reduction factor (RF) associated with each term reflects 

the impact of the term in reducing result size.  Result 
cardinality = Max # tuples  *  product of all RF’s. 
§  Implicit assumption that terms are independent! 
§  Term col=value has RF 1/NKeys(I), given index I on col 
§  Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2)) 
§  Term col>value has RF (High(I)-value)/(High(I)-Low(I)) 

SELECT  attribute list 
FROM  relation list 
WHERE  term1 AND ... AND termk 
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Schema for Examples 

v  Similar to old schema; rname added for variations. 
v  Reserves: 

§  Each tuple is 40 bytes long,  100 tuples per page, 1000 pages. 

v  Sailors: 
§  Each tuple is 50 bytes long,  80 tuples per page, 500 pages.  

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: dates, rname: string) 
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Motivating Example 

v  Cost:  1000+1000*500 I/Os 
v  By no means the worst plan!  
v  Misses several opportunities: 

selections could have been 
`pushed’ earlier, no use is made 
of any available indexes, etc. 

v  Goal of optimization:  To find more 
efficient plans that compute the 
same answer.  

SELECT  S.sname 
FROM  Reserves R, Sailors S 
WHERE  R.sid=S.sid AND  
    R.bid=100 AND S.rating>5 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 

(Simple Nested Loops) 

(On-the-fly) 

(On-the-fly) 

RA Tree: 

Plan: 
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Alternative Plans 1  
(No Indexes) 

v  Main difference:  push selects. 
v  With 5 buffers, cost of plan: 

§  Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, 
uniform distribution). 

§  Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings). 
§  Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250) 
§  Total:  3560 page I/Os. 

Reserves Sailors 

sid=sid 

bid=100  

sname (On-the-fly) 

rating > 5 
(Scan; 
write to  
temp T1) 

(Scan; 
write to 
temp T2) 

(Sort-Merge Join) 
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Alternative Plan 2 
With Indexes 

v  With clustered index on bid of Reserves, we 
get 100,000/100 =  1000 tuples on 1000/100 
= 10 pages for selection. 

v  INL with pipelining (outer is not 
materialized). 
⇒ Projecting out unnecessary fields 

doesn’t help. 

   Join column sid is a key for Sailors. 
⇒   At most one matching tuple, unclustered index on sid OK.  

  Decision not to push rating>5 before the join: 
  there is an index on sid of Sailors, don’t want to compute selection 

   Cost:  Selection of Reserves tuples (10 I/Os). 
  For each, must get matching Sailors tuple (1000*(1.2+1)). 
  Total 2210 page I/Os. 

Reserves 

Sailors 

sid=sid 

bid=100  

sname 
(On-the-fly) 

rating > 5 

(Use hash 
index; do 
not write 
result to  
temp) 

(Index Nested Loops, 
with pipelining ) 

(On-the-fly) 
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Summary 
v  There are several alternative evaluation algorithms for each 

relational operator. 
v  A query is evaluated by converting it to a tree of operators and 

evaluating the operators in the tree. 
v  Must understand query optimization in order to fully 

understand the performance impact of a given database design 
(relations, indexes) on a workload (set of queries). 

v  Two parts to optimizing a query: 
§  Consider a set of alternative plans. 

•  Must prune search space; typically, left-deep plans only. 

§  Must estimate cost of each plan that is considered. 
•  Must estimate size of result and cost for each plan node. 
•  Key issues: Statistics, indexes, operator implementations. 


