
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Implementing
Relational Operators and Query

Evaluation
Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Motivation: Evaluating Queries

v  The same query can be evaluated in different
ways.

v  The evaluation strategy (plan) can make
orders of magnitude of difference.

v  Query efficiency is one of the main areas
where DBMS systems compete with each
other.

v  Person-decades of development, secret
details.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Overview of Query Evaluation

v  Plan: Tree of R.A. ops, with choice of alg for each op.
§  Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for the next
output tuples, it `pulls’ on its inputs and computes them.

§  Much like cursor/iterator.
v  Two main issues in query optimization:

§  For a given query, what plans are considered?
• Algorithm to search plan space for cheapest (estimated) plan.

§  How is the cost of a plan estimated?
v  Ideally: Want to find best plan. Practically: Avoid

worst plans!
v  We will study the System R approach (IBM).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Some Common Techniques

v  Algorithms for evaluating relational operators
use some simple ideas extensively:
§  Indexing: Can use WHERE conditions and indexes

to retrieve small set of tuples (selections, joins)
§  Iteration: Sometimes, faster to scan all tuples even if

there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)

§  Partitioning: By using sorting or hashing on a sort
key, we can partition the input tuples and replace
an expensive operation by similar operations on
smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Examples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example Relations

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Sailors

Reservations

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Query Plan Example

v  RA Tree: expression tree.
v  Each leaf is a schema table.
v  Internal nodes: relational algebra

operator applied to children.
v  Full plan labels each internal node with

implementation strategy.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname RA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly) Plan:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Alternative Plan

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

v  Goal of optimization:
To find efficient
plans that compute
the same answer.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Computing Relational Operators

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Access Paths
v  An access path is a method of retrieving tuples:

§  File scan, or index that matches a selection (in the query)

v  A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.
§  E.g., Tree index on <a, b, c> matches the selection a=5

AND b=3, and a=5 AND b>6, but not b=3.

v  A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.
§  E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND

c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Exercise 12.4
Consider the following schema with the Sailors relation:
Sailors(sid: integer, sname: string, rating: integer, age:

real)
v  For each of the following indexes, list whether the

index matches the given selection conditions.
1.  A hash index on the search key <Sailors.sid>

a.  σsid<50,000 (Sailors)
b.  σsid=50,000 (Sailors)

2.  A B+-tree on the search key <Sailors.sid>
a.  σsid<50,000 (Sailors)
b.  σsid=50,000 (Sailors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Statistics and Catalogs

v  Need information about the relations and indexes
involved. Catalogs typically contain at least:
§  # tuples (NTuples) and # pages (NPages) for each relation.
§  # distinct key values (NKeys) and NPages for each index.
§  Index height, low/high key values (Low/High) for each

tree index.

v  Catalogs updated periodically.
§  Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

v  More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Selection and Projection

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

One Approach to Selections

v  Estimate the most selective access path, retrieve tuples
using it, and apply any remaining terms that don’t
match the index:
§  Most selective access path: An index or file scan that requires

the fewest page I/Os.
§  Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

§  Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Using an Index for Selections

v  Cost depends on #qualifying tuples, and
clustering.
§  Cost of finding qualifying data entries (typically small)

plus cost of retrieving records (could be large w/o
clustering).

§  In example, assume that about 10% of tuples qualify
(100 pages, 10000 tuples). With a clustered index, cost
is little more than 100 I/Os; if unclustered, up to 10000
I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Projection

v  The expensive part is removing duplicates.
§  SQL systems don’t remove duplicates unless the keyword DISTINCT

is specified in a query.
v  Sorting Approach: Sort on <sid, bid> and remove duplicates.

(Can optimize this by dropping unwanted information while
sorting.)

v  Hashing Approach: Hash on <sid, bid> to create partitions.
Load partitions into memory one at a time, build in-memory
hash structure, and eliminate duplicates.

v  If there is an index with both R.sid and R.bid in the search key,
may be cheaper to sort data entries!

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

The Biggie: Join

Nested Loops
Sort-Merge

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Nested Loops: Flowchart

v  From http://www.dbsophic.com/physical-join-operators-in-sql-
server-nested-loops/.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Join: Index Nested Loops

v  If there is an index on the join column of one relation (say S),
can make it the inner and exploit the index.
§  Cost: Pages_in_r *

(1 + tup_per_page* cost of finding matching S tuples)

v  For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming alt. (2) or (3) for data entries)
depends on clustering.
§  Clustered index on S: 1 I/O (typical) for each R tuple,

unclustered: up to 1 I/O per matching S tuple.

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Examples of Index Nested Loops

v  Hash-index (Alt. 2) on sid of Sailors (as inner):
§  Scan Reserves: 1000 page I/Os, 100*1000 tuples.
§  For each Reserves tuple: 1.2 I/Os to get data entry in index,

plus 1 I/O to get (the exactly one) matching Sailors tuple.
Total: 220,000 I/Os for finding matches.

v  Hash-index (Alt. 2) on sid of Reserves (as inner):
§  Scan Sailors: 500 page I/Os, 80*500 tuples.
§  For each Sailors tuple: 1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 R/ 40,000 S). Cost of retrieving them is
1 or 2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Exercise 14.4.1
v  Consider the join R.A with S.b given the following

information. The cost measure is the number of page
I/Os, ignoring the cost of writing out the result.
§  Relation R contains 10,000 tuples and has 10 tuples per page.
§  Relation S contains 2000 tuples, also 10 tuples per page.
§  Attribute b is the primary key for S.
§  Both relations are stored as heap files. No indexes are

available.
v  What is the cost of joining R and S using nested loop

join? R is the outer relation.
v  How many tuples does the join of R and S produce,

at most, and how many pages are required to store
the result of the join back on disk?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Join: Sort-Merge (R S)

v  Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.
§  Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

§  At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

§  Then resume scanning R and S.

v  R is scanned once; each S group is scanned once per
matching R tuple.

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Example of Sort-Merge Join

v  Cost: sort + scan =
v  (M log M + N log N) + (M+N) [sid is key]

§  The cost of scanning, M+N, could be M*N (very unlikely!)
v  With enough buffer pages, both Reserves and Sailors can be

sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Exercise 14.4.3

v  Consider the join R.A with S.b given the following
information. The cost measure is the number of page
i/Os, ignoring the cost of writing out the result.
§  Relation R contains 10,000 tuples and has 10 tuples per page.
§  Relation S contains 2000 tuples, also 10 tuples per page.
§  Attribute b is the primary key for S.
§  Both relations are stored as heap files. No indexes are

available.
v  What is the cost of joining R and S using a sort-merge

join? Assume that the number of I/Os for sorting a
table T is 4 *pages_in_T .

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Query Planning

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Highlights of System R Optimizer

v  Impact:
§  Most widely used currently; works well for < 10 joins.

v  Cost estimation: NP-hard, approximate art at best.
§  Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
§  Considers combination of CPU and I/O costs.

v  Plan Space: Too large, must be pruned.
§  Only the space of left-deep plans is considered. (see text)
§  Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Cost Estimation

v  For each plan considered, must estimate cost:
§  Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

§  Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Size Estimation and Reduction Factors

v  Consider a query block:
v  Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
v  Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.
§  Implicit assumption that terms are independent!
§  Term col=value has RF 1/NKeys(I), given index I on col
§  Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
§  Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Schema for Examples

v  Similar to old schema; rname added for variations.
v  Reserves:

§  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

v  Sailors:
§  Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Motivating Example

v  Cost: 1000+1000*500 I/Os
v  By no means the worst plan!
v  Misses several opportunities:

selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

v  Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Alternative Plans 1
(No Indexes)

v  Main difference: push selects.
v  With 5 buffers, cost of plan:

§  Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

§  Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
§  Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
§  Total: 3560 page I/Os.

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Alternative Plan 2
With Indexes

v  With clustered index on bid of Reserves, we
get 100,000/100 = 1000 tuples on 1000/100
= 10 pages for selection.

v  INL with pipelining (outer is not
materialized).
⇒ Projecting out unnecessary fields

doesn’t help.

  Join column sid is a key for Sailors.
⇒  At most one matching tuple, unclustered index on sid OK.

  Decision not to push rating>5 before the join:
  there is an index on sid of Sailors, don’t want to compute selection

  Cost: Selection of Reserves tuples (10 I/Os).
  For each, must get matching Sailors tuple (1000*(1.2+1)).
  Total 2210 page I/Os.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Summary
v  There are several alternative evaluation algorithms for each

relational operator.
v  A query is evaluated by converting it to a tree of operators and

evaluating the operators in the tree.
v  Must understand query optimization in order to fully

understand the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

v  Two parts to optimizing a query:
§  Consider a set of alternative plans.

•  Must prune search space; typically, left-deep plans only.

§  Must estimate cost of each plan that is considered.
•  Must estimate size of result and cost for each plan node.
•  Key issues: Statistics, indexes, operator implementations.

