Bridge Amplifiers:

- The output signal from a resistance bridge is usually very small in comparison to the reference signal, and it has to be amplified to increase its voltage level to a useful value (e.g., for use in system monitoring, data logging, or control).
- This is typically an instrumentation amplifier, which is essentially a sophisticated differential amplifier.
- The bridge amplifier is modeled as a simple gain K_a , which multiplies the bridge output.

Half-Bridge Circuits:

- A half bridge has only two arms.
- Output is tapped from the mid-point of these two arms.
- The ends of the two arms are excited by two voltages, one of which is positive and the other negative.
- Initially, the two arms have equal resistances so that nominally the bridge output is zero.
- One of the arms has the active element. Its change in resistance results in a nonzero output voltage.
- It is noted that the half-bridge circuit is somewhat similar to a potentiometer circuit (a voltage divider).

The two bridge arms have resistances R_1 and R_2 , and the output amplifier uses a feedback resistance R_f .

To get the output equation, we use the two basic facts for an unsaturated opamp;

- 1. The voltages at the two input leads are equal (due to high gain), and
- 2. The current in either lead is zero (due to high input impedance).

Hence, voltage at node A is zero and the current balance equation at node A is given by:

Impedance Bridges:

- AC Bridge
- Contains four impedances: Z_1, Z_2, Z_3 and Z_4

Owen Bridge:

Wien Bridge Oscillator:

Response parameters for time-domain specification of performance:

Delay Time:

This is usually defined as the time taken to reach 50% of the steady-state value for the first time. This parameter is also a measure of speed of response.

Peak Time

The time at the first peak of the device response is the peak time. This parameter also represents the speed of response of the device.

Settling Time

This is the time taken for the device response to settle down within a certain percentage (typically+2%) of the steady-state value. This parameter is related to the degree of damping present in the device as well as the degree of stability.

Percentage Overshoot

This is defined as, $PO = 100(M_P - 1)\%$, using the normalized-to-unity step response curve, where M_P is the peak value. Percentage overshoot (PO) is a measure of damping or relative stability in the device.

Simple Oscillator Model:

TABLE 3.1

Time-Domain Performance Parameters Using the Simple Oscillator Model

Performance Parameter	Expression
Rise Time	$T_{\rm r} = \frac{\pi - \phi}{\omega_{\rm d}}$ with $\cos \phi = \zeta$
Peak Time	$T_{ m p}=rac{m{\pi}}{m{\omega}_{ m d}}$
Peak Value	$M_{ m p} = 1 - { m e}^{-\pi \zeta/\sqrt{1-\zeta^2}}$
Percentage Overshoot (PO)	$PO = 100 e^{-\pi \zeta / \sqrt{1-\zeta^2}}$
Time Constant	$ au = rac{1}{\zeta \omega_{ m n}}$
Settling Time (2%)	$T_{\rm s} = -rac{\ln\left[0.02\sqrt{1-\zeta^2} ight]}{\zeta\omega_{ m n}} \approx 4 au = rac{4}{\zeta\omega_{ m n}}$

An automobile weighs 1000 kg. The equivalent stiffness at each wheel, including the suspension system, is approximately 60.0×10^3 N/m. If the suspension is designed for a percentage overshoot of 1%, estimate the damping constant that is needed at each wheel.

Solution:

Active Sensors:

- External power is required to operate active sensors/transducers, and they do not depend on their own power conversion characteristics for operation.
- A good example for an active device is a resistive transducer, such as a potentiometer, which depends on its power dissipation through a resistor to generate the output signal.
- Note that an active transducer requires a separate power source (power supply) for operation,

Passive transducer:

- Draws its power from a measured signal (measurand).
- Since passive transducers derive their energy almost entirely from the measurand, they generally tend to distort (or load) the measured signal to a greater extent than an active transducer would. Precautions can be taken to reduce such loading effects.
- On the other hand, passive transducers are generally simple in design, more reliable, and less costly.
- For example, a piezoelectric charge generation is a passive process. But, a charge amplifier, which uses an auxiliary power source, would be needed by a piezoelectric device in order to condition the generated charge.