
Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Bitwise Data Parallelism in Regular Expression
Matching

Rob Cameron, Tom Shermer, Arrvindh Shriraman, Ken Herdy,
Dan Lin, Ben Hull, Meng Lin

School of Computing Science
Simon Fraser University

August 25, 2014

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Outline

1 Introduction

2 Parabix Technology

3 Regular Expression Matching with Parabix

4 Performance

5 Conclusion

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Acceleration of Regular Expression Matching

Example: quickly find instances of
(^|[])\p{Lu}\p{Ll}+[.!?]($|[]) in text.

Sequential algorithms use finite automata or backtracking.

Parallelizing these approaches is difficult.

Finite state machines are the 13th (and hardest) “dwarf” in
the Berkeley Landscape of Parallel Computing Research.
Embarassingly sequential?
Some success in parallel application of FSMs to multiple input
streams.
Recent work shows some promise using techniques such as
coalesced FSMs and principled speculation.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Our Approach

A new algorithm family for regular expression matching based
on bitwise data parallelism.

A fundamentally parallel approach in contrast to approaches
that parallelize existing DFA or NFA algorithms.

Builds on the Parabix methods that have been used for XML
parsing and Unicode transcoding.

Uses bitstream addition for simultaneous nondeterministic
matching of character class repetitions (MatchStar primitive).

Compilation technologies for regular expressions (new),
character classes (existing), unbounded bitstreams (existing).

Recent work: all compilers integrated together with LLVM for
fully dynamic regular expression matching.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Bitwise Data Parallelism

Parabix methods use a transform representation of text.

Bitstreams are formed using one bit per input byte.

Eight basis bit streams are defined for bit 0, bit 1, ... bit 7 of
each byte.

Perform bitwise processing with wide SIMD registers.

Process 128 bytes at a time with SSE2, Neon, Altivec.
Process 256 bytes at a time with AVX2.

Transposition supported efficiently with SIMD pack
operations.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Impressive Results in Full Unicode Matching

Find capitalized words at ends of sentences.

Use Unicode upper/lower case categories.

Match (^|[])\p{Lu}\p{Ll}+[.!?]($|[]) against 110
MB Arabic file.

pcregrep 14,772,797,548 CPU cycles.

egrep 45,951,194,784 CPU cycles.

icgrep (Parabix) 653,530,064 CPU cycles.

20X acceleration over pcgregrep, 70X over GNU egrep.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parallel Bit Streams: A Transform Representation of Text

Given a byte-oriented character stream T , e.g., “Ab17;”.

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parallel Bit Streams: A Transform Representation of Text

Given a byte-oriented character stream T , e.g., “Ab17;”.

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parallel Bit Streams: A Transform Representation of Text

Given a byte-oriented character stream T , e.g., “Ab17;”.

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parallel Bit Streams: A Transform Representation of Text

Given a byte-oriented character stream T , e.g., “Ab17;”.

Transpose to 8 parallel bit streams b0, b1, ..., b7.

Each stream bk comprises bit k of each byte of T .

T A b 1 7 ;

ASCII 01000001 01100010 00110001 00110111 00111011

b0 0 0 0 0 0

b1 1 1 0 0 0

b2 0 1 1 1 1

b3 0 0 1 1 1

b4 0 0 0 0 1

b5 0 0 0 1 0

b6 0 1 0 1 1

b7 1 0 1 1 1

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.

Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.

Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Parabix Programming

Parabix programs written as unbounded bit stream operations.

Unbounded bit streams considered as arbitrarily large integers.

Fundamental operations: bitwise logic, bit-stream shifting and
long-stream addition.

Parabix tool chain has three components:

Character Class Compiler (CCC) produces stream equations
from character classes.
Parallel Block Compiler (Pablo) converts unbounded stream
programs to C++/SIMD.
Portable SIMD library for multiple architectures.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

CCC(cc a = [a])

temp1 = (bit[1] &~ bit[0])

temp2 = (bit[2] &~ bit[3])

temp3 = (temp1 & temp2)

temp4 = (bit[4] | bit[5])

temp5 = (bit[7] &~ bit[6])

temp6 = (temp5 &~ temp4)

cc a = (temp3 & temp6)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

CCC(cc a = [a])

temp1 = (bit[1] &~ bit[0])

temp2 = (bit[2] &~ bit[3])

temp3 = (temp1 & temp2)

temp4 = (bit[4] | bit[5])

temp5 = (bit[7] &~ bit[6])

temp6 = (temp5 &~ temp4)

cc a = (temp3 & temp6)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Formation

Combining 8 bits of a code unit gives a character class stream.

CCC(cc a = [a])

temp1 = (bit[1] &~ bit[0])

temp2 = (bit[2] &~ bit[3])

temp3 = (temp1 & temp2)

temp4 = (bit[4] | bit[5])

temp5 = (bit[7] &~ bit[6])

temp6 = (temp5 &~ temp4)

cc a = (temp3 & temp6)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

CCC(cc 0 9 = [0-9])

temp7 = (bit[0] | bit[1])

temp8 = (bit[2] & bit[3])

temp9 = (temp8 &~ temp7)

temp10 = (bit[5] | bit[6])

temp11 = (bit[4] & temp10)

cc 0 9 = (temp9 &~ temp11)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

CCC(cc 0 9 = [0-9])

temp7 = (bit[0] | bit[1])

temp8 = (bit[2] & bit[3])

temp9 = (temp8 &~ temp7)

temp10 = (bit[5] | bit[6])

temp11 = (bit[4] & temp10)

cc 0 9 = (temp9 &~ temp11)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Ranges

Ranges of characters are often very simple to compute.

CCC(cc 0 9 = [0-9])

temp7 = (bit[0] | bit[1])

temp8 = (bit[2] & bit[3])

temp9 = (temp8 &~ temp7)

temp10 = (bit[5] | bit[6])

temp11 = (bit[4] & temp10)

cc 0 9 = (temp9 &~ temp11)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Character Class Common Subexpressions

Multiple definitions use common subexpressions.

CCC(cc z9 = [z9])

temp12 = (bit[4] &~ bit[5])

temp13 = (temp12 & temp5)

temp14 = (temp9 & temp13)

temp15 = (temp1 & temp8)

temp16 = (bit[6] &~ bit[7])

temp17 = (temp12 & temp16)

temp18 = (temp15 & temp17)

cc z9 = (temp14 | temp18)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Streams

Marker stream Mi indicates the positions that are reachable
after item i in the regular expression.

Each marker stream Mi has one bit for every input byte in the
input file.

Mi [j] = 1 if and only if a match to the regular expression up
to and including item i in the expression occurs at position
j − 1 in the input stream.

Conceptually, marker streams are computed in parallel for all
positions in the file at once (bitwise data parallelism).

In practice, marker streams are computed block-by-block,
where the block size is the size of a SIMD register in bits.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Streams

Marker stream Mi indicates the positions that are reachable
after item i in the regular expression.

Each marker stream Mi has one bit for every input byte in the
input file.

Mi [j] = 1 if and only if a match to the regular expression up
to and including item i in the expression occurs at position
j − 1 in the input stream.

Conceptually, marker streams are computed in parallel for all
positions in the file at once (bitwise data parallelism).

In practice, marker streams are computed block-by-block,
where the block size is the size of a SIMD register in bits.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Streams

Marker stream Mi indicates the positions that are reachable
after item i in the regular expression.

Each marker stream Mi has one bit for every input byte in the
input file.

Mi [j] = 1 if and only if a match to the regular expression up
to and including item i in the expression occurs at position
j − 1 in the input stream.

Conceptually, marker streams are computed in parallel for all
positions in the file at once (bitwise data parallelism).

In practice, marker streams are computed block-by-block,
where the block size is the size of a SIMD register in bits.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Streams

Marker stream Mi indicates the positions that are reachable
after item i in the regular expression.

Each marker stream Mi has one bit for every input byte in the
input file.

Mi [j] = 1 if and only if a match to the regular expression up
to and including item i in the expression occurs at position
j − 1 in the input stream.

Conceptually, marker streams are computed in parallel for all
positions in the file at once (bitwise data parallelism).

In practice, marker streams are computed block-by-block,
where the block size is the size of a SIMD register in bits.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Streams

Marker stream Mi indicates the positions that are reachable
after item i in the regular expression.

Each marker stream Mi has one bit for every input byte in the
input file.

Mi [j] = 1 if and only if a match to the regular expression up
to and including item i in the expression occurs at position
j − 1 in the input stream.

Conceptually, marker streams are computed in parallel for all
positions in the file at once (bitwise data parallelism).

In practice, marker streams are computed block-by-block,
where the block size is the size of a SIMD register in bits.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Stream Example

Consider matching regular expression a[0-9]*[z9] against
the input text below.

M1 marks positions after occurrences of a.

M2 marks positions after occurrences of a[0-9]*.

M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

M2 .1111........1...111111....111...

M31........1.....1.11......1..

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Stream Example

Consider matching regular expression a[0-9]*[z9] against
the input text below.

M1 marks positions after occurrences of a.

M2 marks positions after occurrences of a[0-9]*.

M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

M2 .1111........1...111111....111...

M31........1.....1.11......1..

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Stream Example

Consider matching regular expression a[0-9]*[z9] against
the input text below.

M1 marks positions after occurrences of a.

M2 marks positions after occurrences of a[0-9]*.

M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

M2 .1111........1...111111....111...

M31........1.....1.11......1..

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Marker Stream Example

Consider matching regular expression a[0-9]*[z9] against
the input text below.

M1 marks positions after occurrences of a.

M2 marks positions after occurrences of a[0-9]*.

M3 marks positions after occurrences of a[0-9]*[z9].

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

M2 .1111........1...111111....111...

M31........1.....1.11......1..

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Matching Character Class Repetitions with MatchStar

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

Consider M2 = MatchStar(M1,C)

Use addition to scan each marker through the class.

Bits that change represent matches.

We also have matches at start positions in M1.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Regular Expression Compilation

Our regular expression compiler produces unbounded Pablo
code.

RE compile(a[0-9]*[z9])

m0 = ~0

m1 = pablo.Advance(m0 & cc a)

m2 = pablo.MatchStar(m1, cc 0 9)

m3 = pablo.Advance(m2, cc z9)

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Alternations and Optional Terms

Most RE features are handled naturally.

RE compile(a(b?|cd))

m0 = ~0

m1 = pablo.Advance(m0 & cc a)

m2 = pablo.MatchStar(m1, cc b)

m3 = m1 | m2 # b is optional

m4 = pablo.Advance(m1, cc c)

m5 = pablo.Advance(m2, cc d)

m6 = m3 | m5 # two alternatives

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Nested Repetitions Use While Loops

While loops are used for complex or nested repetitions.

RE compile((a[0-9]*[z9])*)

m0 = ~0

t = m0 # while test variable

a = m0 # while result accumulator

while t:

m1 = pablo.Advance(t & cc a)

m2 = pablo.MatchStar(m1, cc 0 9)

m3 = pablo.Advance(m2, cc z9)

t = m3 &~ a # iterate only for new matches

a = a | m3

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Test Expressions

Name Expression
@ @

Date ([0-9][0-9]?)/([0-9][0-9]?)/([0-9][0-9]([0-9][0-9])?)

Email ([^ @]+)@([^ @]+)

URI (([a-zA-Z][a-zA-Z0-9]*)://|mailto:)([^ /]+)(/[^]*)?|([^ @]+)@([^ @]+)

Hex [](0x)?([a-fA-F0-9][a-fA-F0-9])+[.:,?!]

StarHeight [A-Z]((([a-zA-Z]*a[a-zA-Z]*[])*[a-zA-Z]*e[a-zA-Z]*[])*[a-zA-Z]*s[a-zA-Z]*[])*[.?!]

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

SSE2 Performance

@ Date Email URI Hex StarHeight

0

10

20

30

40

C
yc

le
s

p
er

B
yt

e

bitstreams nrgrep gre2p

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

IPC

@ Date Email URI Hex StarHeight

0

1

2

3

4

In
st

ru
ct

io
n

s
p

er
C

yc
le

bitstreams nrgrep gre2p

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

SIMD Scalability

@ Date Email URI Hex StarHeight

0

1

2

3

A
V

X
2

In
st

ru
ct

io
n

R
ed

u
ct

io
n

bitstreams nrgrep gre2p

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Speedups Achieved

Expression
Bitstream/AVX2 grep Speedup

vs. nrgrep vs. gre2p vs. GNU grep -e

At 3.5X 34X 1.6X

Date 0.76X 13X 48X

Email 9.5X 28X 12X

URI 6.6X 27X 518X

Hex 8.1X 105X 267X

StarHeight 1.9X 7.6X 97X

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

GPU Performance

@ Date Email URI Hex StarHeight

0

0.2

0.4

0.6

0.8

1

1.2

R
u

n
n

in
g

T
im

e
(m

s
p

er
m

eg
ab

yt
e)

SSE2 AVX2 GPU

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Results

A new class of parallel regular expression algorithms has been
introduced based on the concept of bitwise data parallelism
and MatchStar.

Single core acceleration over sequential implementations can
be dramatic.

A long-stream addition technique has been developed to allow
MatchStar to scale directly with SIMD instruction width.

Perfect scaling in instruction count was observed with 256-bit
AVX2 technology versus 128-bit SIMD technology except for
nested repetition.

GPU implementations show promise, but need additional work.

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

Introduction
Parabix Technology

Regular Expression Matching with Parabix
Performance
Conclusion

Ongoing/Future Work

The prototype technologies have now been re-implemented in
a single C++ executable combining 4 compilers.

CCC: Character class compiler
RE compile: regular expression compiler
Pablo: Block-at-a-time compiler
LLVM: Fully dynamic code generation.

Compilation overhead is high, but tolerable for large files.

Unicode support has been added, including additional
MatchStar algorithms for variable-length Unicode character
classes.

Open source implementation available:
http://parabix.costar.sfu.ca/svn/icGREP/

Cameron, Shermer, Shriraman, Herdy, Lin, Hull, and Lin PACT 2014: Parabix grep

	Introduction
	Parabix Technology
	Regular Expression Matching with Parabix
	Performance
	Conclusion

