
Complexity Theory

So far in this course, almost all algorithms had polynomial running time, i.e., on
inputs of size n, worst-case running time is O(nk) for some constant k.

Is this always the case?

Obviously no (just consider basic FF algorithm: running time depends on |f⇤|).

Some problems are even “insolvable”, regardless of how much time is provided,
e.g., the famous halting problem:

It is not possible to tell, in general, whether a given algorithm will halt for
some given input.

Also, there are problems that are solvable, but not in time O(nk) for any constant
k (they may require strictly exponential time, or even more).

Complexity 1

Problems are divided into complexity classes. Informally:

P is the class of problems for which there are algorithms that solve the problem
in time O(nk) for some constant k.

NP is the class of problems for which there are algorithms that verify solutions
in time O(nk) for some constant k.

Intuitively, solving harder that merely verifying, so maybe problems in NP-P
“harder” than problems in P .

. . . but. . .

is there something in NP-P????!?

One of the most famous question in TCS:

P = NP or P 6= NP ?

Complexity 2

Obviously, P ✓ NP .

Study “NP-complete” problems. They are in NP , and, in a sense, they are
“hard” among all problems in NP (or, as hard as any other); will be formalised
later.

Will prove later: if one can show for only one NP-complete problem that it is in
fact in P , then P = NP . Seems to be difficult, so far nobody has succeeded ;-)

Sometimes slight modifications to some problem make a huge difference.

Euler tour vs Hamiltonian cycle. Euler tour: does given directed graph have
a cycle that traverses each edge exactly once? Easy, O(E). Hamiltonian cycle:
does given directed graph have a simple cycle that contains each vertex? NP-
complete!

Complexity 3

Back to this verification business.

Example Hamiltonian cycle. As mentioned, NP-complete, so apparently hard,
perhaps no polynomial-time algorithm that can compute a solution (for all in-
stances).

But: verifying a solution/certificate is trivial! Certificate is sequence

(v
1

, v
2

m. . . , v|V |)

(some ordering of vertices), just have to check whether it’s a proper cycle.

Techniques for proving NP-completeness differ from “usual” techniques for de-
signing or analysing algorithms. In the following, a few key concepts.

Complexity 4

1) Decision problems vs optimisation problems

Many problems are optimisation problems: compute shortest paths, maximum
matching, maximum clique, maximum independent set, etc.

Concept of NP-completeness does not apply (directly) to those, but to decision
problems, where answer is just “yes” or “no”

Does this given graph have a Hamiltonian cycle?

Given this graph, two vertices, and some k, does G contain a path of length at
most k from u to v?

However, usually close relationship. In a sense, decision is “easier” than “optimi-
sation” (or not harder).

Example: can solve SP decision problem by solving SP optimisation: just com-
pare length of (computed) shortest path with k.

General idea: evidence that decision problem is hard implies evidence, that re-
lated optimisation problem is hard.

Complexity 5

2) Encodings

When we want an algorithm to solve some problem, problem instances must be
encoded.

For instance, encode natural numbers as strings

{0,1,10,11,100,101, . . .}

encoding e : IN ! {0,1}⇤ with e(i) = (i)
2

Concrete problem: problem whose instance set is the set of binary strings (read:
encodings of “real” instances)

We say an alg. solves some concrete decision problem in time O(T (n)) if, when
given problem instance i of length n = |i|, it can produce solution in time O(T (n)).

A concrete problem is poly-time solvable, if there is an alg. to solve it in time
O(nk) for some constant k. P is the set of all poly-time solvable concrete decision
problems.

Complexity 6

Would like to talk about abstract problems rather than concrete ones, indepen-
dent of any particular encoding.

But. . . efficiency depends heavily on encoding.

Example: suppose integer k is input to an alg., running time is ⇥(k). If k is
given in unary, then then running time is O(n) in length-n inputs, polynomial. If
k is given binary, then input length is n = blog kc+1; exponential running time
⇥(k) = ⇥(2

n
).

In practice, rule out “expensive” encodings like unary.

Complexity 7

A formal-language framework

An alphabet ⌃ is finite set of sysmbols.

A language L over ⌃ is any set of strings made up of symbols from ⌃.

Empty string is ✏, empty language is ;.

Language of all strings over ⌃ is ⌃

⇤

Ex: ⌃ = {0,1}) ⌃

⇤
= {✏,0,1,00,01,10,11,000, . . .}, all binary strings.

Every language L over ⌃ is subset of ⌃⇤.

Union L
1

[L
2

and intersection L1\L
2

just like with ordinary sets, complement
¯L = ⌃

⇤ � L.

Concatenation of L
1

and L
2

is {xy : x 2 L
1

, y 2 L
2

}.

Closure of L is {✏} [L [L2 [L3 [· · · with Lk being L concatenated to itself k
times.

Complexity 8

Set of instances for any decision problem Q is ⌃

⇤, where ⌃ = {0,1}.

Q is entirely characterised by those instances that produce 1 (yes), so we view
Q as language L over ⌃ = {0,1} with

L = {x 2 ⌃

⇤
: Q(x) = 1}

Ex: (<something> meaning “standard” enc. of something)

HAMILTON = {< G > : G contains Hamiltonian cycle}
SAT = {< F > : formula F is satisfyable}

Complexity 9

Encoding: Using formal languages is ”fine”

We say function f : {0,1}⇤ ! {0,1}⇤ is polynomially computable if there is
polynomial-time TM M that, given x 2 {0,1}⇤, computes f(x).

For set I of problem instances, two encodings e
1

and e
2

are polynomially re-
lated if there are two poly-time computable functions f

12

and f
21

such that
8i 2 I,

f
12

(e
1

(i)) = e
2

(i) and f
21

(e
2

(i)) = e
1

(i)

If two encodings of some abtract problem are polynomially related, then whether
problem is in P is independent of which encoding we use.

Note: the length can increase only by a polynomial factor!

It can be shown: the ”standard inputs” (graph as an adjacency matrix,...) are
polynomially related.

Complexity 10

Lemma. Let Q be an abstract decision problem on an instance set I, let e
1

, e
2

,
be polynomially related encodings on I. Then, e

1

(Q) 2 P iff e
2

(Q) 2 P .

Proof. We show one direction (e
1

(Q) 2 P) e
2

(Q) 2 P), other is symmetric.

Suppose e
1

(Q) 2 P, i.e., e
1

(Q) can be solved in time O(nk) for some constant
k, and that for any instance i, e

1

(i) can be computed from e
2

(i) in time O(nc)

for some constant c, n = |e
2

(i)|.

To solve e
2

(Q), on input e
2

(i), first compute e
1

(i), and run alg. for e
1

(Q) on
e
1

(i).

Time: conversion takes O(nc), therefore |e
1

(i)| = O(nc) (can’t write more).
Solving e

1

(i) takes O(|e
1

(i)|k) = O(nck), polynomial. Thus e
2

(Q) 2 P .

Complexity 11

3) Machine Model

Our goal is to say that Problem A can not be solved in polynomial time.

But on which machine? A parallel machine with 1000 processors? A modern
computer? Can we solve more in polynomial time if the computers get faster?

In complecity theory people use a very simple machine model, the so-called Tur-
ing machine.

One can show that everything that can be solved by a modern computer in poly-
nomial time can also be solved on a TM in polynomial time.

Complexity 12

Machine Model

A TM (Turing machine) consists of a tape of infinite length (in one direction) and
a pointer. The tape consists of cells and every cell can store one symbol.

The pointer points to one of the memory cells. In the beginning the input is in cell
1, and the pointer position is cell 1.

The TM has a finite control. In every step the control is in one of a finite amount
of states.

In every step the TM does the following.

• It reads the symbol at the actual pointer position

• It writes a new symbol into the position (which one depends on the state)

• It can move the pointer one step to the left or to the right.

Complexity 13

Formally, a Turing Machine M = (Q,⌃,�, �, q
0

, B, F) is defined as follows.

• Q is the (finite) set of states.

• � is the set of tape symbols.

• ⌃ is the set of input symbols (� ⇢ ⌃).

• B = {N,R,L}.

• � : (Q⇥ �) ! (Q⇥ �⇥ {L,R,N} is the transition function.

• q
0

2 Q is the initial state.

• F ⇢ Q is an end state.

Complexity 14

State of the TM:

↵
1

q↵
2

with q 2 Q and ↵
1

,↵
2

2 �

⇤. here ↵ = ↵
1

↵
2

is the contents of the tape.

If now ↵
2

= ↵↵0
2

the TM looks up (q,↵) = (q0,�,M).

• If M = N the next state will be ↵
1

q0�↵0
2

.

• If M = R the next state will be ↵
1

�q0↵0
2

.

• If M = R and ↵
1

= ↵0
1

� the next state will be ↵
1

q0��↵0
2

.

We write ↵
1

q↵
2

) ↵0
1

q0↵0
2

if a one step transition from ↵
1

q↵
2

to ↵0
1

q0↵0
2

exists.

We write ↵
1

q↵
2

)
⇤ ↵

0
1

q0↵0
2

if a (possibly long) transition from ↵
1

q↵
2

to ↵0
1

q0↵0
2

exists.

Examples for TM: see homework.

Complexity 15

The language L accepted by TM M is the set of words from ⌃

⇤ so that M

reaches a state in F . To make our life easier we will say in the following that M
outputs 1.

In all other cases M rejects in input. It can stop in a state not in F and output 0,
or M can go into an endless loop.

Complexity 16

We say TM M accepts string x 2 {0,1}⇤ if, given input x, M ’s output is M(x) =

1.

The language accepted by M is

L = {x 2 ⌃

⇤
: M(x) = 1}.

M rejects x if M(x) = 0.

Important: even if L is accepted by some TM M , M will not necessarily reject
x 62 L.

A language L is decided by TM M , if L is accepted by M and every string not in
L is rejected.

L is accepted/decided in polynomial time by TM M , if it is accepted/decided
by M in time O(nk) for some const. k.

Now: alternative definition

P = {L ✓ {0,1}⇤ : 9 TM M that decides L in poly-time}

Complexity 17

Moreover:

Theorem. P = {L : L is accepted by a TM in poly-time}.

Proof. Clearly decided)accepted, so we need only show accepted)decided.

Let L be accepted by M in time O(nk), thus there is constant c s.t. M accepts L

in at most T = cnk steps.

Construct M 0: for any input string x, M 0 simulates M for T steps. If M has
accepted, then M 0 accepts x by outputting 1, otherwise M 0 rejects by outputting
0 q.e.d.

Note: proof is nonconstructive, we may not know runtime bound for given L 2 P
(but it exists!).

Complexity 18

Poly-time verification

Look at TMs that verify membership in languages.

Ex: for instance < G > of HAMILTON, we are also given ordering c of vertices on
cycle. Can easily check whether c is a proper cycle on all vertices of G, so c is
certificate that G indeed belongs to HAMILTON.

As we will see later, HAMILTON is NP-complete, and thus most likely not in P ,
but verification is easy.

Define verification TM: two argument TM M , one argument is ordinary input
string x, other is binary string y called certificate. M verifies input string x if 9
certificate y s.t. M(x, y) = 1. The language verified by M is

L = {x 2 {0,1}⇤ : 9y 2 {0,1}⇤ s.t. M(x, y) = 1}

Intuition: M verifies L if 8x 2 L there is y that M can use to prove x 2 L. For
any x 62 L, there must be no certificate proving that x 2 L.
Ex: If G 62 HAMILTON there must be no permutation of vertices that can fool
verifier into believing G is hamiltonian.

Complexity 19

Def: a language L belongs to NP if and only if 9 two-input poly-time TM M and
constant c s.t.

L = {x 2 {0,1}⇤ : 9 certificate y with |y| = O(|x|c)
such that M(x, y) = 1}

Historically, NP=“non-deterministic poly-time”, all the problems that are ac-
cepted by a poly-time non-deterministic Turing machine (NTM), which

1. non-deterministically “guesses” a solution (certificate) if there is one, and

2. deterministically verifies it

in poly-time. See the similarity?

Facts:

NP 6= ; (HAMILTON2 NP)

P ✓ NP

Complexity 20

Open questions:

P = NP or P 6= NP ?

NP closed under complement, i.e., L 2 NP) ¯L 2 NP ?
(with co-NP = {L :

¯L 2 NP}, equiv. to NP = co-NP)

Since P is closed under complement, P ✓ NP \co-NP . Thus four possibilities:

co−NP NPP = NP co−NP
P = NP co−NP

P

co−NP NP

P
NP = co−NPP = NP = co−NP

TL: NP = co-NP and P = NP , most unlikely of the four
TR: NP = co-NP and P 6= NP
BL: NP 6= co-NP and P = NP \ co-NP
BR: NP 6= co-NP and P 6= NP \ co-NP , most likely

Complexity 21

NP-completeness

Remember: class of NP-complete problems; property: if one of them is in P,
then all of NP .

Reducibility

Intuition: problem Q can be reduced to Q0 if any instance of Q can be “easily
rephrased” as instance of Q0

We say that language L
1

is poly-time reducible to language L
2

, written L
1

p

L
2

, if there exists a poly-time computable function f : {0,1}⇤ ! {0,1}⇤ s.t. 8x 2
{0,1}⇤,

x 2 L
1

if and only if f(x) 2 L
2

.

f is called reduction function.

Complexity 22

NP-completeness II

A language L ✓ {0,1}⇤ is called NP-complete if

1. L 2 NP , and

2. L0 p L for every L0 2 NP .

If L satisfies only (2) it is called NP-hard.

Complexity 23

Idea of poly-time reduction from L
1

to L
2

:

• L
1

, L
2

✓ {0,1}⇤

• f provides poly-time mapping s.t.

– if x 2 L
1

then f(x) 2 L
2

– if x 62 L
1

then f(x) 62 L
2

• Thus f maps any instance x of decision problem represented by L
1

to in-
stance f(x) of problem represented by L

2

• Answer to whether f(x) 2 L
2

directly provides answer to whether x 2 L
1

{0,1}* {0,1}*

L1 L2

f

Complexity 24

