
Flow networks, flow, maximum flow

Can interpret directed graph as “flow network”.

Material courses through some system from some source to some sink.

Source produces material at some steady rate, sink consumes at same rate.

Examples:
• water through system of pipes

• current through electrical network

• data through network

• trucks from factory to warehouse

Each edge has given capacity (pipe: x gallons of water per minute; street: y trucks
per hour; network: z kB per second).

Vertices are “junctions”, for those other than source and sink, material flows through
them without collecting in them (i.e., rate at which material enters vertex equals
rate at which it leaves it; “flow conservation”).

In maximum-flow problem, we wish to compute greatest possible rate of trans-
portation from source to sink.

Maximum Flow 1

Some definitions
Flow network G = (V,E) is directed graph, each edge (u, v) ∈ E has non-negative
capacity c(u, v) ≥ 0. If (u, v) 6∈ E, we assume c(u, v) = 0.

Two distinguished vertices: source s and sink t.

We assume that every vertex lies on some path from s to t, i.e., for each v ∈ V ,
there is a path s; v ; t (implies that G is connected, |E| ≥ |V | − 1).

A flow in G is a real-valued function f : V × V → IR, that satisfies these three
properties:

Capacity constraint:
For all u, v ∈ V , we require f(u, v) ≤ c(u, v).

Flow from one vertex to another must not exceed given capacity.

Skew symmetry:
For all u, v ∈ V , we require f(u, v) = −f(v, u).

Flow from vertex u to vertex v is negative of flow in reverse direction.

Flow conservation:
For all u ∈ V − {s, t}, we require ∑

v∈V

f(u, v) = 0.

Total flow out of a vertex (other than source or sink) is 0. Can rewrite as
∀v ∈ V − {s, t} :

∑
u∈V f(u, v) = 0, i.e., total flow into a vertex is 0.

Maximum Flow 2

f(u, v) — can be positive, zero, or negative — is called flow from u to v.

The value of flow f is defined as the total flow leaving the source (and thus entering
the sink):

|f | =
∑
v∈V

f(s, v)

Note: | · | does not mean “absolute value” or “cardinality”).

The total positive flow entering vertex v is∑
u∈V : f(u,v)>0

f(u, v)

Also, total positive flow leaving vertex u is∑
v∈V : f(u,v)>0

f(u, v)

The total net flow at a vertex v is

total positive flow leaving v

− total positive flow entering v

Maximum Flow 3

Vancouver

Edmonton

Calgary

Saskatoon

Regina

Winnipeg16

13

10 4

12

14

9 7

20

4

s t

a

b

c

d

11/16

8/13

10 1/4

12/12

4/9

11/14

7/7

15/20

4/4

Second figure shows flow f in G with value |f | = 19.

Maximum Flow 4

Cancellation

Suppose a company ships 8 crates per day from Edmonton to Calgary, and 3 crates
per day from Calgary to Edmonton.

Natural enough, but we can’t represent these shipments directly by flows: skey-
symmetry is violated [must have f(u, v) = −f(v, u)].

However, the strategy is pointless anyway: why ship 8 crates from Edmonton to
Calgary, and 3 creates back, instead of just shipping 5 crates from Edmonton to
Calgary?

In effect, 3 of the 8 crates from Edmonton to Calgary are cancelled by the 3 crates
from Calgary to Edmonton.

We represent this with a flow: we have f(E,C) = 5 and f(C,E) = −5.

Maximum Flow 5

In general, cancellation allows to represent shipments between two cities by a flow
that is positive along at most one of the two edges.

Cancellation will arise implicitly in the algorithms.

• Suppose (u, v) has flow of f(u, v).

• We may increase flow on edge (v, u) by some amount d.

• Mathematically, this must decrease f(u, v) by d.

• We think of these d units as cancelling d units that are already on (u, v) (increase
in one direction cancels flow in other).

Maximum Flow 6

Technical tools
Implicit summation. Let X,Y ⊆ V . Then

f(X,Y) =
∑
x∈X

∑
y∈Y

f(x, y)

For example, flow-conservation∑
v∈V

f(u, v) = 0 ∀u ∈ V − {s, t}

can be written simply as

f(u, V) = 0 ∀u ∈ V − {s, t}

Commonly occuring identities

1. For all X ⊆ V , we have f(X,X) = 0

Because each f(u, v) cancels f(v, u), which = −f(u, v) by skew symmetry.

2. For all X,Y ⊆ V , we have f(X,Y) = −f(Y,X)

Generalisation of f(X,X) = 0, same reasoning.

3. For all X,Y, Z ⊆ V with X ∩ Y = ∅, we have

f(X ∪ Y, Z) = f(X,Z) + f(Y, Z)

f(Z,X ∪ Y) = f(Z,X) + f(Z, Y)

Split summation into sum of two summations: one over X, one over Y .

Maximum Flow 7

The Ford-Fulkerson method

Three important ideas:

1. residual networks

2. augmenting paths

3. cuts

Method is iterative:

1. Start with f(u, v) = 0 for all u, v ∈ V
2. At each iteration, increase flow value by finding “augmenting path” — a path

from source to sink along which we can increase flow — and then augment flow
along this path.

3. Repeat until no augmenting path can be found.

Pseudocode:
1: initialise flow f to 0
2: while there exists an augmenting path p do
3: augment flow f along p
4: end while

Maximum Flow 8

Residual networks

Idea: Residual network consists of edges that can admit more flow.

Formally: Consider vertices u and v. Amount of additional flow we can push from
u to v before exceeding capacity c(u, v) is residual capacity of (u, v):

cf(u, v) = c(u, v)− f(u, v).

Note: When flow is negative, then residual capacity cf(u, v) is greater than c(u, v).

Interpretation:
• flow of −x from u to v

• implies flow of x from v to u

• can be cancelled by pushing x units from u to v

• can then push another c(u, v) from u to v

• can thus push total of x+ c(u, v) > c(u, v) from u to v

Maximum Flow 9

Given flow network G = (V,E) and flow f , the residual network of G induced by f
is Gf = (V,Ef) with

Ef = {(u, v) ∈ V × V : cf(u, v) > 0}

i.e. each residual edge that can admit flow that is strictly positive.

G u

3/5
−→
←−
1

v =⇒ Gf u

2
−→
←−
4

v

Note: |Ef | ≤ 2|E|.

Maximum Flow 10

Relationship between flow in residual network and flow in original network.

Lemma 1. Let G = (V,E) be a flow network, f be a flow in G, Gf be the residual
network of G induced by f , and let f ′ be a flow in Gf .

Then flow sum f + f ′ with

(f + f ′)(u, v) = f(u, v) + f ′(u, v)

is a flow in G with value
|f + f ′| = |f |+ |f ′|.

Proof. Must verify that skew symmetry, capacity constraints, and conservation are
obeyed.

Skew symmetry:

(f + f ′)(u, v) = f(u, v) + f ′(u, v)
= −f(v, u)− f ′(v, u)
= −(f(v, u) + f ′(v, u))
= −(f + f ′)(v, u)

Maximum Flow 11

Capacity constraints: Note f ′ is flow in Gf , so f ′(u, v) ≤ cf(u, v). Since by
def. cf(u, v) = c(u, v)− f(u, v),

(f + f ′)(u, v) = f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + (c(u, v)− f(u, v))
= c(u, v)

Flow conservation: For all u ∈ V − {s, t},∑
v∈V

(f + f ′)(u, v) =
∑
v∈V

(f(u, v) + f ′(u, v))

=
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v)

= 0 + 0
= 0

Value:

|f + f ′| =
∑
v∈V

(f + f ′)(s, v)

=
∑
v∈V

(f(s, v) + f ′(s, v))

=
∑
v∈V

f(s, v) +
∑
v∈V

f ′(s, v)

= |f |+ |f ′|

Maximum Flow 12

Augmenting paths

Given flow network G = (V,E) and flow f , an augmenting path p is a simple path
in residual network Gf .

Recall: each edge (u, v) in Gf admits some additional positive flow, obeying capacity
constraint.

Flow value can be increased by

cf(p) = min
(u,v)∈p

cf(u, v).

3/5 2/6 5/5 2/3 2/4

2 4 5 2 2

3 2 1
2

G

G
f

s

s

t

t

In this example, augmentation by 2.

Maximum Flow 13

Lemma. Let G = (V,E) be a flow network, f be a flow in G, and let p be an
augmenting path in Gf . Define fp : V × V → IR by

fp(u, v) =

 cf(p) if (u, v) is on p
−cf(p) if (v, u) is on p
0 otherwise

Then fp is a flow in Gf with value |fp| = cf(p) > 0.

Corollary. Let G, f , p, fp be as above. Define f ′ : V × V → IR by f ′ = f + fp. Then
f ′ is a flow in G with value |f ′| = |f |+ |fp| > |f |.

Proof. From last two lemmas.

Maximum Flow 14

Cuts of flow networks
A cut of flow network G = (V,E) is partition of V into S and T = V − S such that
s ∈ S and t ∈ T .

If f is a flow in G, then net flow across cut (S, T) is defined to be f(S, T), capacity
is c(S, T).

A minimum cut is a cut with minimum capacity over all cuts.

T
S

s t

a

b

c

d

11/16

8/13

10

1/4

12/12

4/9

11/14

7/7

15/20

4/4

Flow: f(a, c) + f(b, c) + f(b, d) = 12 + (−4) + 11 = 19
Note: can include negative flows.

Capacity: c(a, c) + c(b, d) = 12 + 14 = 26
Note: only non-negative values, only edges going from S to T are being accounted
for.

Maximum Flow 15

Net flow across any cut is the same:

Lemma. Let f be a flow in a flow network G with source s and sink t, let (S, T) be
a cut of G. Then the flow across (S, T) is f(S, T) = |f |.

Proof. Note T = V − S.

f(S, T) = f(S, V)− f(S, S)
= f(S, V)− 0
= f(s, V) + f(S − s, V)
= f(s, V) + 0 by flow cons.
= |f | by def.

Corollary. The value of a flow f in a network G is upper-bounded by the capacity
of any cut (S, T) in G.

Proof.
|f | = f(S, T)

=
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S, T)

Maximum Flow 16

We know: maximum flow in a network is bounded by capacity of minimum cut.
Following theorem shows equality.

Theorem. (Max-flow min-cut theorem)
If f is a flow in a flow network G = (V,E) with source s and sink t, then the following
conditions are equivalent:
1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of G.

Remark. By last corollary, value of any flow is at most capacity of any cut.
In particular, value of maximum flow is at most capacity of minimum cut. Thus, if
value of maximum flow equals capacity of some cut, then this must a minimum cut
(can’t be greater).

Maximum Flow 17

Proof of theorem.

(1) =⇒ (2)
Suppose that f is a maximum flow in G but Gf has an augmenting path p. Then by
earlier corollary today (slide 4), flow sum f + fp is flow in G w/ value strictly greater
than |f |, contradiction!

(2) =⇒ (3)
Suppose Gf doesn’t have augmenting path, i.e., Gf contains no path from s to t.
Define

S = {v ∈ V : ∃ path from s to v in Gf}
T = V − S

Partition (S, T) is a cut because s ∈ S and t 6∈ S. For each u ∈ S, v ∈ T we have
f(u, v) = c(u, v), because otherwise (u, v) ∈ Ef , v would be in S (s ; u → v). By
earlier Lemma, |f | = f(S, T) = c(S, T).

(3) =⇒ (1)
By earlier corollary, |f | ≤ c(S, T) for all cuts (S, T). Condition |f | = c(S, T) implies
that f is maximum flow.

Maximum Flow 18

Basic Ford-Fulkerson algorithm

Input: G, s, t
1: for each edge (u, v) ∈ E do
2: f [u, v]← 0
3: f [v, u]← 0
4: end for
5: while ∃ path p = s; t in res. network Gf do
6: cf(p)← min{cf(u, v) : (u, v) ∈ p}
7: for each edge (u, v) ∈ p do
8: f [u, v]← f [u, v] + cf(p)
9: f [v, u]← −f [u, v]
10: end for
11: end while

Maximum Flow 19

An example: book page 659, figure 26.5

Maximum Flow 20

Running time

Depends on how augmenting paths in line 5 are determined.

If chosen poorly, algorithm might not even terminate:

• value of flow increases with each iteration, but

• need not even converge to maximum flow value
(theoretically; problems arise with irrational capacities — can’t be stored on
finite-precision computers).

If chosen by using BFS, running time is polynomial. (We’ll see later.)

Maximum Flow 21

A simple analysis

Assume integral capacities. Simple bound O(E|f∗|) for running time when chosing
paths arbitrarily, |f∗| being value of maximum flow:
• initialization in lines 1–4 take O(E)

• while loop in lines 5–11 is executed at most |f∗| times (value of flow increases
by at least one unit in each iteration)

• work done within while loop takes O(V + E) = O(E) if we use DFS or BFS

Maximum Flow 22

Problem case: Alg. takes Ω(E|f∗|) because (u, v) is always chosen to be part of
augmenting path.
Here: f∗| = 2,000,000

1,000,000

1

1,000,000 1,000,000

1,000,000

999,999

999,999

11

1

1,000,000

1,000,000

1
1

999,999 999,999

999,999
999,999

1

11

s

u

v

t

s

u

v

t

s

u

v

t

Maximum Flow 23

An improvement: Edmonds-Karp

Idea: compute augmenting paths with BFS, picking shortest paths from source s
to sink t (shortest w.r.t. # edges)

This variant has running time O(V E2), no longer dependent on value of maximum
flow, |f∗|.

Def.: δf(u, v) is shortest-path distance from u to v in Gf (each edge has unit
distance).

Lemma. If the Edmonds-Karp (EK) algorithm is run in flow network G = (V,E)
with source s and sink t, then ∀v ∈ V − {s, t}, δf(s, v) in residual network increases
monotonically with each flow augmentation.

Maximum Flow 24

Proof (by contradiction). Assume for some v ∈ V − {s, t}, there is a first augmen-
tation that causes shortest-path distance to decrease.

Let f be flow before this augmentation,
f ′ be flow afterward.

Let v be vertex with minimum δf ′(s, v) whose distance was decreased, so δf ′(s, v) <
δf(s, v).

Let p = s ; u → v be a shortest path from s to v in Gf ′ so that (u, v) ∈ Ef ′ and
δf ′(s, u) = δf ′(s, v)− 1.

By choice of v, distance of u did not decrease (v has smallest δf ′(s, ·)), that is,
δf ′(s, u) ≥ δf(s, u).

Claim: (u, v) 6∈ Ef (note: (u, v) ∈ Ef ′ by constr.)
If we had (u, v) ∈ Ef , then also

δf(s, v)
(∗)
≤ δf(s, u) + 1 ≤ δf ′(s, u) + 1 = δf ′(s, v)

Contradiction!

(∗) Consider a shortest path p from s to v, among cheapest such paths. In particular,
p is not more expensive than a shortest path from s to v plus edge (u, v), which
comes with “weight” one.

Maximum Flow 25

So far, so good. . .
. . . but how come (u, v) 6∈ Ef and (u, v) ∈ Ef ′???
. . . there was no residual capacity before,

but there is afterward???

Must be because algorithm has increased flow from v to u.

EK always augments flow along shortest paths, thus shortest path from s to u in
Gf has (v, u) as last edge, and

δf(s, v) = δf(s, u)− 1
≤ δf ′(s, u)− 1
= δf ′(s, v)− 2

Contradiction to assumption δf ′(s, v) < δf(s, v), so no such vertex v exists.

q.e.d.

Maximum Flow 26

We now use this lemma to prove. . .

Theorem. If EK is run on a flow network G = (V,E) with source s and sink t, then
the total # of flow augmentations is O(V E).

Proof. We call edge (u, v) in Gf critical on augmenting path (AP) p if cf(p) =
cf(u, v).

Note:
• after augmenting along AP, all critical edges disappear from residual network

• at least one edge on any AP must be critical

We show that each edge can become critical at most |V |/2− 1 times.

Let u, v be connected by some edge in E.

APs are shortest paths, thus when (u, v) is critical for the first time, we have
δf(s, v) = δf(s, u) + 1.

Maximum Flow 27

Once flow is augmented, (u, v) disappears from residual network.

It cannot reappear on another AP until flow from u to v is decreased, i.e., (v, u)
appears on an AP.

With f ′ as flow in G at this moment, δf ′(s, u) = δf ′(s, v) + 1.

With δf(s, v) ≤ δf ′(s, v) by Lemma (shortest-path distances increase monotonically),

δf ′(s, u) = δf ′(s, v) + 1 ≥ δf(s, v) + 1 = δf(s, u) + 2

Thus, from time (u, v) becomes critical to time when it next becomes critical,
distance of u from source (in residual network!) increases by ≥ 2.

Initially, distance is ≥ 0.

Intermediate vertices on a shortest path s ; u can’t contain s, u, t [(u, v) on AP
implies u 6= t].

Maximum Flow 28

Thus, until u becomes unreachable (if ever), distance is ≤ |V | − 2, and (u, v) can
become critical at most (|V | − 2)/2 = |V |/2− 1 = O(V) times.

O(E) pairs of vertices with edge between them in residual network, thus total # of
critical edges during entire execution of KE is O(V E).

Each PA has at least one critical edge =⇒ q.e.d.

Each iteration takes O(E) (find APs by BFS), thus total running time is O(V E2).

Although not bad, other algorithms (push-relabel method) are better, obtain O(V 2E),
or even O(V 3).

Maximum Flow 29

An application of the FF method, other than flow

Many (combinatorial) problems can be reduced to max-flow problems, for instance,
maximum matchings in bipartite graphs.

Given undirected, bipartite graph G = (L ∪R,E) (all edges between L and R).

A matching is a subset M ⊆ E s.t. ∀v ∈ L ∪R, at most one edge is incident on v.

Vertex v is either matched (there is an edge incident), or unmatched.

A maximum matching is a matching of maximum cardinality (as opposed to a
maximal matching, which is not extendable).

Maximum Flow 30

Can use FF method to find a maximum matching (MM) in bipartite, undirected
G = (V,E) in time polynomial in |V | and |E|.

Idea: construct flow network where flows correspond to matchings:

RL L R

s t

Basically,
• direct edges from L to R
• add source and sink + new edges
• each edge has capacity one
• L−R edges used in matching have flow one
• other L−R edges have flow zero

Maximum Flow 31

More formally,given undirected, bipartite G = (V,E), construct corresponding flow
network G′ = (V ′, E′):

• let source s and sink t be new vertices not in V , let V ′ = V ∪ {s, t}
• if vertex partition of G is V = L ∪ R, the directed edges of G′ are edges of G,
directed from L to R, along with |V | new edges

E′ = {(s, u) : u ∈ L} ∪
{(u, v) : u ∈ L, v ∈ R, (u, v) ∈ E} ∪
{(v, t) : v ∈ R}

• each edge in G′ has unit capacity

If we assume that each edge in G has degree at least one, we have |E| ≥ |V |/2 and
thus |E| ≤ |E′| = |E|+ |V | ≤ 3|E|, and so |E′| = Θ(E).

Maximum Flow 32

Def.: A flow f in flow network G is integer-valued if f(u, v) is an integer for all
(u, v) ∈ V × V .

Lemma. Let G = (V,E) be bipartite, directed graph, let G′ be corresponding flow
network.
1. If M is a matching in G, then there is an integer-valued flow f in G′ with value
|f | = |M |.

2. If f is an integer-valued flow in G′, then there is a matching M in G with
cardinality |M | = |f |.

Maximum Flow 33

Proof. Very simple.

(i) From matching M to IV flow in G′.

Define f :
• if (u, v) ∈M , then

f(s, u) = f(u, v) = f(v, t) = 1

and
f(u, s) = f(v, u) = f(t, v) = −1

• other edges (u, v) ∈ E′, f(u, v) = 0

f satisfies skew symmetry, capacity contstraints, and flow conservation (obvious,
but must check!).

Intuition: each edge (u, v) ∈ M in the matching corresponds to one unit of flow in
G′ along

s→ u→ v → t.

Paths induced by edges in M are vertex-disjoint (by def. of matching; except s&t)

Net flow across cut (L ∪ {s}, R ∪ {t}) is equal to |M |

We know lemma “flow across any cut is equal to value of total flow”, so |f | = |M |

Maximum Flow 34

(ii) From IV flow in G′ to matching M.

Let f be an IV flow in G′, let

M = {(u, v) : u ∈ L, v ∈ R, f(u, v) > 0}

Each u ∈ L has exactly one entering edge, (s, u)

At most one unit of pos. flow enters each u ∈ L

If so, by flow conservation, one unit must leave

Flow is IV, thus ∀u ∈ L, the one unit can enter on at most one edge, and can leave
on at most one edge

Thus, one unit of flow enters u ∈ L iff there is exactly one vertex v ∈ R s.t. f(u, v) = 1

At most one edge leaving each u ∈ L carries pos. flow

Analogous argument for for each v ∈ R

=⇒ our M is a matching

Maximum Flow 35

What about M’s size?

f(s, u) = 1 for every matched u ∈ L
f(u, v) = 0 for every edge (u, v) ∈ E −M
Since V ′ = L ∪R ∪ {s, t} ⇔ R = V ′ − L− {s, t}, we have

|M | = f(L,R)
= f(L, V ′)− f(L,L)− f(L, s)− f(L, t)

Observe

f(L, V ′) = 0
flow conservation,

∑
v∈V ′ f(u, v) = 0 ∀u ∈ V ′ − {s, t}

f(L,L) = 0
skew-symmetry

−f(L, s) = f(s, L)
also skew-symmetry

f(L, t) = 0
no edges from L to t

Thus |M | = 0− 0− (−f(s, L))− 0 = f(s, L) = |f |

q.e.d.

Maximum Flow 36

We would like to conclude that maximum matching in some bipartite graph G
corresponds to maximum flow in corresponding flow network G′

and that we therefore can compute the matching by solving the flow problem

. . . but. . .

max flow algorithm might return flow with f(u, v) not integral for some edge (u, v),
even though |f | must be integral (by lemma)

But not all is lost:

Theorem. If the capacity function c takes only integral values, then the maximum
flow f produced by the Ford-Fulkerson method has the property that |f | is integer-
valued.
Moreover, for all vertices u and v, the value of f(u, v) is an integer.

Proof. Homework.

Maximum Flow 37

