Minimum spanning trees

One of the most famous greedy algorithms
(actually rather family of greedy algorithms).

e Given undirected graph G = (V, E), connected
e \Weight function w : F —- R
e For simplicity, all edge weights distinct

e Spanning tree: tree that connects all vertices, hence n = |V/| ver-
tices and n — 1 edges

o MST T : w(T) = > (y4)er w(u,v) Minimized
What for?

e Chip design

e Communication infrastructure in networks

Minimum Spanning Trees 1

Minimum Spanning Trees

Growing a minimum spanning tree

First, ‘‘generic’ algorithm. It manages set of edges A, maintains in-
variant:

Prior to each iteration, A is subset of some MST.

At each step, determine edge (u,v) that can be added to A, i.e. with-
out violating invariant, i.e., AU{(u,v)} is also subset of some MST.
We then call (u,v) a safe edge.

1: A<+ ()

2: While A does not form a spanning tree do
3: find an edge (u,v) that is safe for A

4 A+— AU {(u,v)}

5. end while

Minimum Spanning Trees 3

We use invariant as follows:

Initialization. After line 1, A triv. satisfies invariant.

Maintenance. Loop in lines 2—5 maintains invariant by adding only
safe edges.

Termination. All edges added to A areina MST, so A must be MST.

Minimum Spanning Trees 4

How to recognize safe edges?

Definitions

1. A cut (S,V —8S) of an undir. graph G = (V, E) is a partition of V.

2. An edge (u,v) crosses cut (S,V — S) if one endpoint is in S, the
other one in V — S.

3. A cut respects a set A C E if no edge in A crosses the cut.

4. An edge is a light edge crossing a cut if its weight is the minimum
of any edge crossing the cut.

Theorem 1. Let A be a subset of E that is included in some MST
for G, let (S,V —S) be any cut of G that respects A, let (u,v) be a
light edge crossing (S,V — S).

Then, (u,v) is safe for A.

Minimum Spanning Trees 5

Proof.

let T' be a MST that includes A and assume T does not include

(u,v)

Goal: construct MST T that includes A U {(u,v)}. This shows
that (u,v) is safe (by def.)

(u,v) € T', so there must be path
p=(u=wy > wp— -+ — WL =10)
with (wi,wi_l_l) el forl<i<k

uw and v are on opposite sides of cut (S,V — S), so there must be
at least one edge (x,y) of T crossing cut

(z,y) is not in A because A respects cut

(z,y) is on unique path from « to v, so removing (x,y) breaks T
into two components

Minimum Spanning Trees 6

e adding (u,v) reconnects them to form new spanning tree T’ =

T —A{(z,y)} U{(u,v)}

e (u,v) is light edge crossing (S,V — S), and (x,y) also crosses this
cut, therefore w(u,v) < w(zx,y) and

W(T") = w(T) —w(z,y) + wlu,v) < W(T)
Hence T’ is MST.

e ACT and (z,y) € A (this was because (x,y) crosses cut but A
respects cut), so A C T"

e Since (u,v) € T, we have AU {(u,v)} C T’ and (u,v) is safe for A

g.e.d.

Minimum Spanning Trees 7

We see:

e at any point, graph G4 = (V, A) is a forest with components being
trees

e Any safe edge (u,v) for A connects distinct components of G4,
since AU {(u,v)} must be acyclic

e main loop is executed |[V| — 1 times (one iteration for every edge
of the resulting MST)

We'll see Kruskal's and Prim’s algorithms, they differ in how they
specify rules to determine safe edges.

In Kruskal’s, A is a forest; in Prim’'s, A is a single tree .

Minimum Spanning Trees 8

The following is going to be used later on.

Corollary. Let A be subset of E that is included in some MST for GG, let
C = (Vg, Eg) be a connected component (tree) in forest G4 = (V, A).
If (u,v) is a light edge connecting C to some other component in Gy,
then (u,v) is safe for A.

Proof. The cut (Vo,V — Vo) respects A (A defines the components
of G4), and (u,v) is a light edge for this cut. Therefore, (u,v) is safe
for A.

Minimum Spanning Trees 9

Kruskal’s algorithm

Kruskal’s adds in each step an edge of least possible weight that con-
nects two different trees.

If C1,C> denote the two trees that are connected by (u,v), then since
(u,v) must be light edge connecting C7 to some other tree, the corol-
lary implies that (u,v) is safe for C;.

Minimum Spanning Trees 10

Implementation

This particular implementation uses Disjoint-Set data structure.

Each set contains vertices in a tree of the current forest.

e Make-Set(w) initializes a new set containing just vertex u.

e Find-Set(u) returns representative element from set that contains
u (SO we can check whether two vertices u,v belong to same tree).

e Union(u,v) combines two trees (the one containing U with the one
containing v).

Minimum Spanning Trees 11

The Algorithm

Given: graph G = (V, E), weight function w on E

1: A+ ()
for each vertex v € V[G] do

Make-Set(u)
end for
sort edges of E into nondecr. order by weight w
for each edge (u,v) € E, taken in nondecreasing order by weight
w do

If Find-Set(u) #= Find-Set(v) then

A+~ AU {(u,v)}

S A A

9: Union(u,v)
10: end if
11: end for

12: return A

Minimum Spanning Trees 12

e initializing A takes O(1)
e sorting edges takes O(FE log F)

e main for loop performs O(F) Find-Set and Union Operations;
along with |V| Make-Set operation, this takes

O(V+FE))-O(ogE)=0(FElogV)
(see Section 21.4 in book)

e Disjoint-Set operations take O(ElogV)

e Total running time of Kruskal's is O(ElogV)

Minimum Spanning Trees

13

Prim’s algorithm

A always forms a single tree (as opposed to a forest like in
Kruskal's).

Tree start from single (arbitrary) vertex r (root) and grows until
it spans all of V.

At each step, a light edge is added to tree A that connects A to
isolated vertex of G4 = (V, A).

By corollary, this adds only edges safe for A, hence on termination,
A is MST.

Minimum Spanning Trees 15

Implementation

Key is efficiently selecting new eddes. In this implementation, ver-
tices not in the tree reside in min-priority queue Q based on a key
field:

For v € V, key[v] is minimum weight of any edge connecting v to a
vertex in tree A; key[v] = oo if there is no such edge.

Field w[v] names parent of v in tree. During algorithm, A is kept
implicitly as

A={(v,mv]) s veV —{r}-Q}
When algorithm terminates, min-priority queue @ is empty, MST A for
G is thus
A={(v,m[v]) 1 veV —{r}}

Minimum Spanning Trees 16

Given: graph G = (V, E), weight function w, root vertex r ¢ V

1: for each uw € V do

2: key[u] < oo

3: w[u] < NIL

4: end for

5. key[r] + O

6: Q<+ V

7: while Q # (0 do

8: u < Extract-Min(Q) {w.r.t. key}
9: for each v € adj[u] do

10: iIf ve @ and w(u,v) < key[v] then
11: w[v] < u

12: key[v] <+ w(u,v)

13: end if

14: end for
15: end while

Minimum Spanning Trees

Lines 1-6

e set key of each vertex to oo (except root » whose key is set to 0
so that it will be processed first)

e Set parent of each vertex to NIL

e initialize min-priority queue @

Algorithm maintains three-part loop invariant:

1. A={(v,w[v]): veV —{r}—-Q}
2. Vertices already placed into MST are those in V — Q)

3. Forall v € Q, if w[v] & NIL, then key[v] < oo and key|[v] is weight of
a light edge (v, w[v]) connecting v to some vertex already placed
into MS'T

Minimum Spanning Trees 18

Line 8 identifies u € @ incident on a light edge crossing cut (V—-Q, Q),
expect in first iteration, in which u = r due to line 5.
Removing u from) adds it to set V — @ of vertices in the tree, adding

(u, w[u]) to A.

The for loop of lines 9—14 updates the key and =« fields of every vertex
v adjacent to v but not in the tree. This maintains third part of loop

invariant.

Minimum Spanning Trees 19

Running time

Depends on how min-priority queue @ is implemented. If as binary
min-heap (Chapter 6 in book), then

e Can use Build-Min-Heap for initialization in lines 1-6, time O(V)

e body of while loop is executed O(V) times, each Extract-Min takes
O(log V), hence total time for all calls to Extract-Min is O(V logV)

e for loop in lines 9—14 is executed O(F) times altogether, since sum
of lengths of all adjacency lists is 2|E|.

Minimum Spanning Trees 20

root

Minimum Spanning Trees

21

