
Minimum spanning trees

One of the most famous greedy algorithms
(actually rather family of greedy algorithms).

• Given undirected graph G = (V,E), connected

• Weight function w : E → IR

• For simplicity, all edge weights distinct

• Spanning tree: tree that connects all vertices, hence n = |V | ver-
tices and n− 1 edges

• MST T : w(T) =
∑

(u,v)∈T w(u, v) minimized

What for?

• Chip design

• Communication infrastructure in networks

Minimum Spanning Trees 1

6 4

5

14
10

2

3 8

9

15

Minimum Spanning Trees 2

Growing a minimum spanning tree

First, “generic” algorithm. It manages set of edges A, maintains in-
variant:

Prior to each iteration, A is subset of some MST.

At each step, determine edge (u, v) that can be added to A, i.e. with-
out violating invariant, i.e., A∪{(u, v)} is also subset of some MST.
We then call (u, v) a safe edge.

1: A← ∅
2: while A does not form a spanning tree do
3: find an edge (u, v) that is safe for A
4: A← A ∪ {(u, v)}
5: end while

Minimum Spanning Trees 3

We use invariant as follows:

Initialization. After line 1, A triv. satisfies invariant.

Maintenance. Loop in lines 2–5 maintains invariant by adding only
safe edges.

Termination. All edges added to A are in a MST, so A must be MST.

Minimum Spanning Trees 4

How to recognize safe edges?

Definitions

1. A cut (S, V − S) of an undir. graph G = (V,E) is a partition of V .

2. An edge (u, v) crosses cut (S, V − S) if one endpoint is in S, the
other one in V − S.

3. A cut respects a set A ⊆ E if no edge in A crosses the cut.

4. An edge is a light edge crossing a cut if its weight is the minimum
of any edge crossing the cut.

Theorem 1. Let A be a subset of E that is included in some MST
for G, let (S, V − S) be any cut of G that respects A, let (u, v) be a
light edge crossing (S, V − S).

Then, (u, v) is safe for A.

Minimum Spanning Trees 5

Proof.

• let T be a MST that includes A and assume T does not include
(u, v)

• Goal: construct MST T ′ that includes A ∪ {(u, v)}. This shows
that (u, v) is safe (by def.)

• (u, v) 6∈ T , so there must be path

p = (u = w1 → w2 → · · · → wk = v)

with (wi, wi+1) ∈ T for 1 ≤ i < k

• u and v are on opposite sides of cut (S, V − S), so there must be
at least one edge (x, y) of T crossing cut

• (x, y) is not in A because A respects cut

• (x, y) is on unique path from u to v, so removing (x, y) breaks T
into two components

Minimum Spanning Trees 6

• adding (u, v) reconnects them to form new spanning tree T ′ =
T − {(x, y)} ∪ {(u, v)}

• (u, v) is light edge crossing (S, V − S), and (x, y) also crosses this
cut, therefore w(u, v) ≤ w(x, y) and

W (T ′) = w(T)− w(x, y) + w(u, v) ≤W (T)

Hence T ′ is MST.

• A ⊆ T and (x, y) 6∈ A (this was because (x, y) crosses cut but A
respects cut), so A ⊆ T ′

• Since (u, v) ∈ T ′, we have A ∪ {(u, v)} ⊆ T ′ and (u, v) is safe for A

q.e.d.

Minimum Spanning Trees 7

We see:

• at any point, graph GA = (V,A) is a forest with components being
trees

• Any safe edge (u, v) for A connects distinct components of GA,
since A ∪ {(u, v)} must be acyclic

• main loop is executed |V | − 1 times (one iteration for every edge
of the resulting MST)

We’ll see Kruskal’s and Prim’s algorithms, they differ in how they
specify rules to determine safe edges.

In Kruskal’s, A is a forest; in Prim’s, A is a single tree .

Minimum Spanning Trees 8

The following is going to be used later on.

Corollary. Let A be subset of E that is included in some MST for G, let
C = (VC, EC) be a connected component (tree) in forest GA = (V,A).
If (u, v) is a light edge connecting C to some other component in GA,
then (u, v) is safe for A.

Proof. The cut (VC, V − VC) respects A (A defines the components
of GA), and (u, v) is a light edge for this cut. Therefore, (u, v) is safe
for A.

Minimum Spanning Trees 9

Kruskal’s algorithm

Kruskal’s adds in each step an edge of least possible weight that con-
nects two different trees.

If C1, C2 denote the two trees that are connected by (u, v), then since
(u, v) must be light edge connecting C1 to some other tree, the corol-
lary implies that (u, v) is safe for C1.

Minimum Spanning Trees 10

Implementation

This particular implementation uses Disjoint-Set data structure.

Each set contains vertices in a tree of the current forest.

• Make-Set(u) initializes a new set containing just vertex u.

• Find-Set(u) returns representative element from set that contains
u (so we can check whether two vertices u, v belong to same tree).

• Union(u, v) combines two trees (the one containing U with the one
containing v).

Minimum Spanning Trees 11

The Algorithm

Given: graph G = (V,E), weight function w on E

1: A← ∅
2: for each vertex v ∈ V [G] do
3: Make-Set(u)
4: end for
5: sort edges of E into nondecr. order by weight w
6: for each edge (u, v) ∈ E, taken in nondecreasing order by weight

w do
7: if Find-Set(u) 6= Find-Set(v) then
8: A← A ∪ {(u, v)}
9: Union(u, v)

10: end if
11: end for
12: return A

Minimum Spanning Trees 12

• initializing A takes O(1)

• sorting edges takes O(E logE)

• main for loop performs O(E) Find-Set and Union operations;
along with |V | Make-Set operation, this takes

O((V + E)) ·O(logE) = O(E logV)

(see Section 21.4 in book)

• Disjoint-Set operations take O(E logV)

• Total running time of Kruskal’s is O(E logV)

Minimum Spanning Trees 13

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

Minimum Spanning Trees 14

Prim’s algorithm

• A always forms a single tree (as opposed to a forest like in
Kruskal’s).

• Tree start from single (arbitrary) vertex r (root) and grows until
it spans all of V .

• At each step, a light edge is added to tree A that connects A to
isolated vertex of GA = (V,A).

• By corollary, this adds only edges safe for A, hence on termination,
A is MST.

Minimum Spanning Trees 15

Implementation

Key is efficiently selecting new edges. In this implementation, ver-
tices not in the tree reside in min-priority queue Q based on a key
field:

For v ∈ V , key[v] is minimum weight of any edge connecting v to a
vertex in tree A; key[v] =∞ if there is no such edge.

Field π[v] names parent of v in tree. During algorithm, A is kept
implicitly as

A = {(v, π[v]) : v ∈ V − {r} −Q}

When algorithm terminates, min-priority queue Q is empty, MST A for
G is thus

A = {(v, π[v]) : v ∈ V − {r}}

Minimum Spanning Trees 16

Given: graph G = (V,E), weight function w, root vertex r ∈ V

1: for each u ∈ V do
2: key[u]←∞
3: π[u]← NIL
4: end for
5: key[r]← 0

6: Q← V

7: while Q 6= ∅ do
8: u← Extract-Min(Q) {w.r.t. key}
9: for each v ∈ adj[u] do

10: if v ∈ Q and w(u, v) < key[v] then
11: π[v]← u

12: key[v]← w(u, v)

13: end if
14: end for
15: end while

Minimum Spanning Trees 17

Lines 1–6

• set key of each vertex to ∞ (except root r whose key is set to 0

so that it will be processed first)

• set parent of each vertex to NIL

• initialize min-priority queue Q

Algorithm maintains three-part loop invariant:

1. A = {(v, π[v]) : v ∈ V − {r} −Q}

2. Vertices already placed into MST are those in V −Q

3. For all v ∈ Q, if π[v] 6= NIL, then key[v] <∞ and key[v] is weight of
a light edge (v, π[v]) connecting v to some vertex already placed
into MST

Minimum Spanning Trees 18

Line 8 identifies u ∈ Q incident on a light edge crossing cut (V −Q,Q),
expect in first iteration, in which u = r due to line 5.
Removing u from Q adds it to set V −Q of vertices in the tree, adding
(u, π[u]) to A.

The for loop of lines 9–14 updates the key and π fields of every vertex
v adjacent to u but not in the tree. This maintains third part of loop
invariant.

Minimum Spanning Trees 19

Running time

Depends on how min-priority queue Q is implemented. If as binary
min-heap (Chapter 6 in book), then

• can use Build-Min-Heap for initialization in lines 1–6, time O(V)

• body of while loop is executed O(V) times, each Extract-Min takes
O(logV), hence total time for all calls to Extract-Min is O(V logV)

• for loop in lines 9–14 is executed O(E) times altogether, since sum
of lengths of all adjacency lists is 2|E|.

Minimum Spanning Trees 20

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

6 4

5

14
10

2

3 8

9

15

root

Minimum Spanning Trees 21

