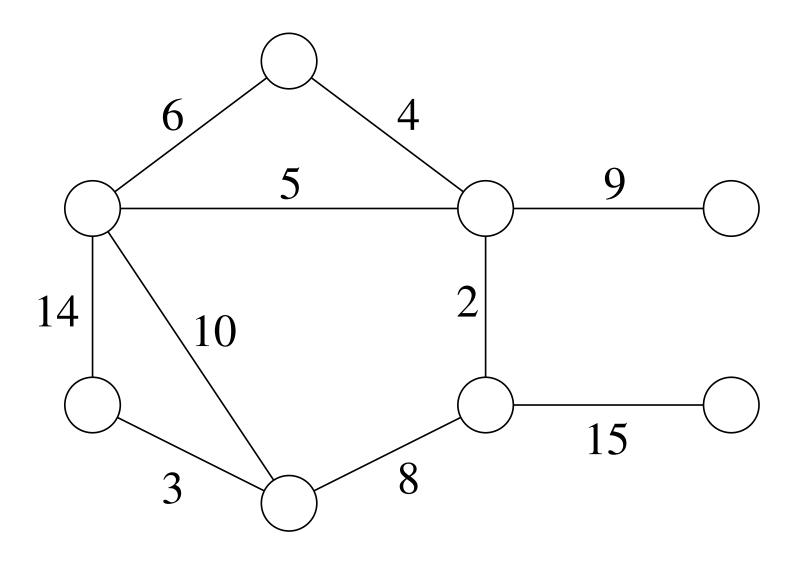
### Minimum spanning trees

One of the most famous greedy algorithms (actually rather *family* of greedy algorithms).

- Given undirected graph G = (V, E), connected
- Weight function  $w: E \to \mathbb{R}$
- For simplicity, all edge weights distinct
- ullet Spanning tree: tree that connects all vertices, hence n=|V| vertices and n-1 edges
- MST  $T: w(T) = \sum_{(u,v) \in T} w(u,v)$  minimized

#### What for?

- Chip design
- Communication infrastructure in networks



# Growing a minimum spanning tree

First, "generic" algorithm. It manages set of edges A, maintains invariant:

#### Prior to each iteration, A is subset of some MST.

At each step, determine edge (u, v) that can be added to A, i.e. without violating invariant, i.e.,  $A \cup \{(u, v)\}$  is also subset of some MST. We then call (u, v) a safe edge.

- 1:  $A \leftarrow \emptyset$
- 2: **while** A does not form a spanning tree **do**
- 3: find an edge (u,v) that is safe for A
- 4:  $A \leftarrow A \cup \{(u,v)\}$
- 5: end while

We use invariant as follows:

**Initialization.** After line 1, A triv. satisfies invariant.

**Maintenance.** Loop in lines 2–5 maintains invariant by adding only safe edges.

**Termination.** All edges added to A are in a MST, so A must be MST.

### How to recognize safe edges?

#### **Definitions**

- 1. A cut (S, V S) of an undir. graph G = (V, E) is a partition of V.
- 2. An edge (u,v) crosses cut (S,V-S) if one endpoint is in S, the other one in V-S.
- 3. A cut *respects* a set  $A \subseteq E$  if no edge in A crosses the cut.
- 4. An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut.

**Theorem 1.** Let A be a subset of E that is included in some MST for G, let (S, V - S) be any cut of G that respects A, let (u, v) be a light edge crossing (S, V - S).

Then, (u, v) is safe for A.

#### Proof.

- ullet let T be a MST that includes A and assume T does not include (u,v)
- Goal: construct MST T' that includes  $A \cup \{(u,v)\}$ . This shows that (u,v) is safe (by def.)
- $(u,v) \not\in T$ , so there must be path

$$p = (u = w_1 \to w_2 \to \cdots \to w_k = v)$$

with  $(w_i, w_{i+1}) \in T$  for  $1 \le i < k$ 

- u and v are on opposite sides of cut (S, V S), so there must be at least one edge (x, y) of T crossing cut
- $\bullet$  (x,y) is not in A because A respects cut
- $\bullet$  (x,y) is on unique path from u to v, so removing (x,y) breaks T into two components

- $\bullet$  adding (u,v) reconnects them to form new spanning tree  $T'=T-\{(x,y)\}\cup\{(u,v)\}$
- (u,v) is light edge crossing (S,V-S), and (x,y) also crosses this cut, therefore  $w(u,v) \leq w(x,y)$  and

$$W(T') = w(T) - w(x, y) + w(u, v) \le W(T)$$

Hence T' is MST.

- $A \subseteq T$  and  $(x,y) \not\in A$  (this was because (x,y) crosses cut but A respects cut), so  $A \subseteq T'$
- Since  $(u,v) \in T'$ , we have  $A \cup \{(u,v)\} \subseteq T'$  and (u,v) is safe for A

q.e.d.

#### We see:

- at any point, graph  $G_A = (V, A)$  is a **forest** with components being **trees**
- Any safe edge (u,v) for A connects distinct components of  $G_A$ , since  $A \cup \{(u,v)\}$  must be acyclic
- ullet main loop is executed |V|-1 times (one iteration for every edge of the resulting MST)

We'll see Kruskal's and Prim's algorithms, they differ in how they specify rules to determine safe edges.

In Kruskal's, A is a **forest**; in Prim's, A is a **single tree** .

The following is going to be used later on.

**Corollary.** Let A be subset of E that is included in some MST for G, let  $C = (V_C, E_C)$  be a connected component (tree) in forest  $G_A = (V, A)$ . If (u, v) is a light edge connecting C to some other component in  $G_A$ , then (u, v) is safe for A.

**Proof.** The cut  $(V_C, V - V_C)$  respects A (A defines the components of  $G_A$ ), and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

# Kruskal's algorithm

Kruskal's adds in each step an edge of least possible weight that connects two different trees.

If  $C_1, C_2$  denote the two trees that are connected by (u, v), then since (u, v) must be light edge connecting  $C_1$  to some other tree, the corollary implies that (u, v) is safe for  $C_1$ .

### **Implementation**

This particular implementation uses Disjoint-Set data structure.

Each set contains vertices in a tree of the current forest.

- Make-Set(u) initializes a new set containing just vertex u.
- Find-Set(u) returns representative element from set that contains u (so we can check whether two vertices u, v belong to same tree).
- Union(u, v) combines two trees (the one containing U with the one containing v).

### The Algorithm

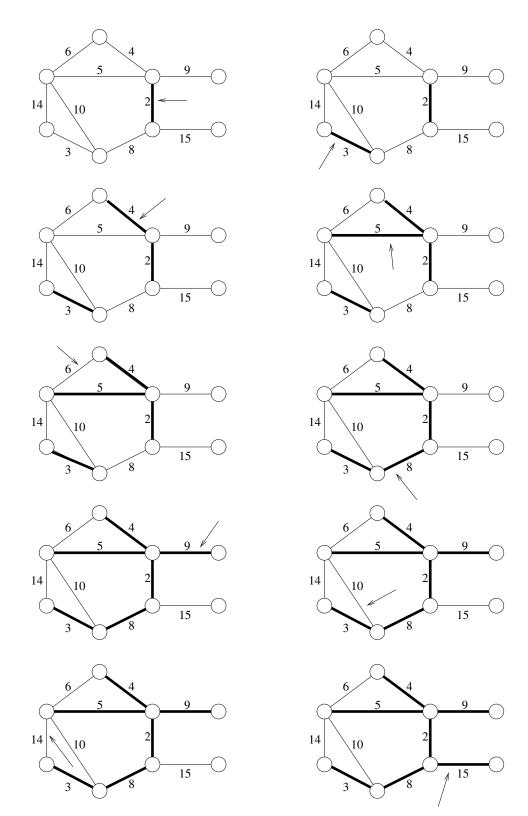
```
Given: graph G = (V, E), weight function w on E
 1: A \leftarrow \emptyset
 2: for each vertex v \in V[G] do
      Make-Set(u)
 3:
 4: end for
 5: sort edges of E into nondecr. order by weight w
 6: for each edge (u,v) \in E, taken in nondecreasing order by weight
    w do
      if Find-Set(u) \neq \text{Find-Set}(v) then
         A \leftarrow A \cup \{(u,v)\}
 8:
         Union(u, v)
 9:
    end if
10:
11: end for
12: return A
```

- initializing A takes O(1)
- sorting edges takes  $O(E \log E)$
- ullet main **for** loop performs O(E) Find-Set and Union operations; along with |V| Make-Set operation, this takes

$$O((V+E)) \cdot O(\log E) = O(E \log V)$$

(see Section 21.4 in book)

- Disjoint-Set operations take  $O(E \log V)$
- Total running time of Kruskal's is  $O(E \log V)$



### Prim's algorithm

- ullet A always forms a **single tree** (as opposed to a forest like in Kruskal's).
- ullet Tree start from single (arbitrary) vertex r (root) and grows until it spans all of V.
- At each step, a light edge is added to tree A that connects A to isolated vertex of  $G_A = (V, A)$ .
- ullet By corollary, this adds only edges safe for A, hence on termination, A is MST.

# **Implementation**

Key is **efficiently selecting new edges**. In this implementation, vertices **not** in the tree reside in min-priority queue Q based on a key field:

For  $v \in V$ , key[v] is minimum weight of any edge connecting v to a vertex in tree A;  $\text{key}[v] = \infty$  if there is no such edge.

Field  $\pi[v]$  names parent of v in tree. During algorithm, A is kept implicitly as

$$A = \{(v, \pi[v]) : v \in V - \{r\} - Q\}$$

When algorithm terminates, min-priority queue  ${\cal Q}$  is empty, MST  ${\cal A}$  for  ${\cal G}$  is thus

$$A = \{(v, \pi[v]) : v \in V - \{r\}\}$$

**Given:** graph G = (V, E), weight function w, root vertex  $r \in V$ 

```
1: for each u \in V do
 2: \ker[u] \leftarrow \infty
 3: \pi[u] \leftarrow \text{NIL}
 4: end for
 5: \text{key}[r] \leftarrow 0
 6: Q \leftarrow V
 7: while Q \neq \emptyset do
     u \leftarrow \texttt{Extract-Min}(Q) \{ \texttt{w.r.t. key} \}
    for each v \in adj[u] do
 9:
            if v \in Q and w(u,v) < \text{key}[v] then
10:
              \pi[v] \leftarrow u
11:
              \text{key}[v] \leftarrow w(u, v)
12:
13: end if
    end for
14:
15: end while
```

#### Lines 1–6

- ullet set key of each vertex to  $\infty$  (except root r whose key is set to 0 so that it will be processed first)
- set parent of each vertex to NIL
- initialize min-priority queue Q

#### Algorithm maintains three-part loop invariant:

1. 
$$A = \{(v, \pi[v]) : v \in V - \{r\} - Q\}$$

- 2. Vertices already placed into MST are those in V-Q
- 3. For all  $v \in Q$ , if  $\pi[v] \neq \text{NIL}$ , then  $\text{key}[v] < \infty$  and key[v] is weight of a light edge  $(v, \pi[v])$  connecting v to some vertex already placed into MST

**Line 8** identifies  $u \in Q$  incident on a light edge crossing cut (V-Q,Q), expect in first iteration, in which u=r due to line 5.

Removing u from Q adds it to set V-Q of vertices in the tree, adding  $(u,\pi[u])$  to A.

The **for** loop of lines 9–14 updates the *key* and  $\pi$  fields of every vertex v adjacent to u but **not** in the tree. This maintains third part of loop invariant.

#### Running time

Depends on how min-priority queue Q is implemented. If as binary min-heap (Chapter 6 in book), then

- can use Build-Min-Heap for initialization in lines 1-6, time O(V)
- body of **while** loop is executed O(V) times, each Extract-Min takes  $O(\log V)$ , hence total time for all calls to Extract-Min is  $O(V \log V)$
- for loop in lines 9–14 is executed O(E) times altogether, since sum of lengths of all adjacency lists is 2|E|.

