All-pairs-shortest-paths

e Directed graph G = (V, E), weight function
w:E—->R,|V]=n

e Weight of path p = (v1,v2,...,v) is w(p) =

e Assume G contains no negative-weight cycles

k—1
1=1

’LU(’UZ', Ui—|—l)

e Goal: create nxn matrix of shortest path distances é(u,v), u,v € V

e 1st idea: use single-source-shortest-path alg (i.e., Bellman-Ford);

but it's too slow, O(n*) on dense graph

Dynamic Programming

13

Adjacency-matrix representation of graph:

e n X n adjacency matrix W = (w;;) of edge weights

e assume
0 if 1=

w;; = weight of (i,5) ifi#jand (i,j) € E

00 if i =4 and (i,j) € E

In the following, we only want to compute lengths of shortest paths,
not construct the paths.

Dynamic Programming 14

Dynamic programming approach, four steps:

1. Structure of a shortest path: Subpaths of shortest paths are
shortest paths.

Lemma. Let p = (vq,vp,...,v;) be a shortest path from v to vy, let
pij = (vi, Vi41,...,v5) for 1 <i < j <k be subpath from v; to v;. Then,
p;; is shortest path from v; to v;.

Proof. Decompose p into

P1g Dij Pjk
’Ul ~> U?:’\f)’vj ~> ’Uk,

Then, w(p) = w(py;) + w(pi;) + w(pjr). Assume there is cheaper p;j
from v; to v; with w(pgj) < w(p;;). Then

!/
p1; Pij Pjk
V1 ™~ Vg ™~ ’Uj ~ VUl

is path from vy to v, whose weight w(pli)—l—w(p;j)—l—w(pjk) is less than
w(p), a contradiction.

Dynamic Programming 15

2. Recursive solution and 3. Compute opt. value (bottom-up)

Let dg.”) = weight of shortest path from ¢ to 5 that uses at most m
edges.

40 _ {O if i = j
i

oo ifi#7
: —1
dz(]m) = mklﬂ {dz(]:n) —+ wkj}
at most m—1 edges K’s

at most m—1 edges

We're looking for 6(i,j) = d,g”_l) = dg”) = dg""l) — ...

Dynamic Programming 16

Alg. is straightforward, running time is O(n*) (n — 1 passes, each
computing n? d's in ©(n) time)

Unfortunately, no better than before. ..

Approach is similar to matrix multiplication:
C = A- B, nxn matrices, ¢;j = > i a; - b, O(n3) operations

Replacing “4+" with “min’" and “."" with *4"" gives

Cij = mkin{aik + b}
very similar to

m : m—1

Hence D(m) = p(m—=1) w7

Dynamic Programming 17

Floyd-Warshall algorithm
Also DP, but faster (factor logn)

Define c,g”) = weight of a shortest path from : to 3 with intermediate

vertices in {1,2,...,m}.

Then 6(i,§) = ¢

Dynamic Programming 18

Compute cg?) in terms of smaller ones, c§].<”):

(0) g
Cij Wi
(m) _ i (m—1) (m—1) (m—1)
Cij = min{c;; , Cim —I—ij
(m—1) (m-1)
¢ im @ ij
(i))

(m-1)
C..

intermediate vertices in {1.....m—1}

Dynamic Programming

Difference from previous algorithm: needn’t check all possible in-
termediate vertices. Shortest path simply either includes m or doesn't.

Pseudocode:

for m<+ 1 to n do
for 1 +— 1 to n do
for j «— 1 ton do
if Cij > Cim + Cmj then
Cij <= Cim T Cmj
end if
end for
end for
end for

_ (m—1)

Superscripts dropped, start loop with ¢;; = ¢;; — (™)

Time: ©(n3), simple code

Dynamic Programming 20

Best algorithm to date is O(VZ2logV + VE)

Note: for dense graphs (|E| ~ |V|?) can get APSP (with Floyd-
Warshall) for same cost as getting SSSP (with Bellman-Ford)! (©(VE) =
O (n?))

Dynamic Programming 21

