
All-pairs-shortest-paths

• Directed graph G = (V,E), weight function
w : E ! IR, |V | = n

• Weight of path p = (v
1

, v
2

, . . . , vk) is w(p) =

Pk�1
i=1

w(vi, vi+1

)

• Assume G contains no negative-weight cycles

• Goal: create n⇥n matrix of shortest path distances �(u, v), u, v 2 V

• 1st idea: use single-source-shortest-path alg (i.e., Bellman-Ford);
but it’s too slow, O(n4) on dense graph

Dynamic Programming 13

Adjacency-matrix representation of graph:

• n⇥ n adjacency matrix W = (wij) of edge weights

• assume

wij =

8
><

>:

0 if i = j
weight of (i, j) if i 6= j and (i, j) 2 E
1 if i 6= j and (i, j) 62 E

In the following, we only want to compute lengths of shortest paths,
not construct the paths.

Dynamic Programming 14

Dynamic programming approach, four steps:

1. Structure of a shortest path: Subpaths of shortest paths are
shortest paths.

Lemma. Let p = (v
1

, v
2

, . . . , vk) be a shortest path from v
1

to vk, let
pij = (vi, vi+1

, . . . , vj) for 1 i j k be subpath from vi to vj. Then,
pij is shortest path from vi to vj.

Proof. Decompose p into

v
1

p
1i
; vi

pij
; vj

pjk
; vk.

Then, w(p) = w(p
1i) + w(pij) + w(pjk). Assume there is cheaper p0ij

from vi to vj with w(p0ij) < w(pij). Then

v
1

p
1i
; vi

p0ij
; vj

pjk
; vk

is path from v
1

to vk whose weight w(p
1i)+w(p0ij)+w(pjk) is less than

w(p), a contradiction.

Dynamic Programming 15

2. Recursive solution and 3. Compute opt. value (bottom-up)

Let d
(m)

ij = weight of shortest path from i to j that uses at most m

edges.

d
(0)

ij =

(
0 if i = j
1 if i 6= j

d
(m)

ij = min

k

⇢
d
(m�1)
ik + wkj

�

i j

k’sat most m−1 edges

at most m−1 edges

We’re looking for �(i, j) = d
(n�1)
ij = d

(n)
ij = d

(n+1)

ij = · · ·

Dynamic Programming 16

Alg. is straightforward, running time is O(n4) (n � 1 passes, each
computing n2 d’s in ⇥(n) time)

Unfortunately, no better than before. . .

Approach is similar to matrix multiplication:

C = A ·B, n⇥ n matrices, cij =
P

k aik · bkj, O(n3) operations

Replacing “+” with “min” and “ ·” with “+” gives

cij = min

k
{aik + bkj},

very similar to

d
(m)

ij = min

k
{d(m�1)ik + wkj}

Hence D(m)

= D(m�1) “⇥” W.

Dynamic Programming 17

Floyd-Warshall algorithm

Also DP, but faster (factor logn)

Define c
(m)

ij = weight of a shortest path from i to j with intermediate
vertices in {1,2, . . . ,m}.

Then �(i, j) = c
(n)
ij

Dynamic Programming 18

Compute c
(n)
ij in terms of smaller ones, c

(<n)
ij :

c
(0)

ij = wij

c
(m)

ij = min

✓
c
(m�1)
ij , c

(m�1)
im + c

(m�1)
mj

◆

i j

intermediate vertices in {1,...,m−1}

m
c c

c

(m−1) (m−1)

(m−1)

im mj

ij

Dynamic Programming 19

Difference from previous algorithm: needn’t check all possible in-
termediate vertices. Shortest path simply either includes m or doesn’t.

Pseudocode:

for m 1 to n do
for i 1 to n do

for j 1 to n do
if cij > cim + cmj then

cij cim + cmj

end if
end for

end for
end for

Superscripts dropped, start loop with cij = c
(m�1)
ij , end with cij = c

(m)

ij

Time: ⇥(n3), simple code

Dynamic Programming 20

Best algorithm to date is O(V 2

logV + V E)

Note: for dense graphs (|E| ⇡ |V |2) can get APSP (with Floyd-
Warshall) for same cost as getting SSSP (with Bellman-Ford)! (⇥(V E) =

⇥(n3))

Dynamic Programming 21

