Assignment 7

Problem 1

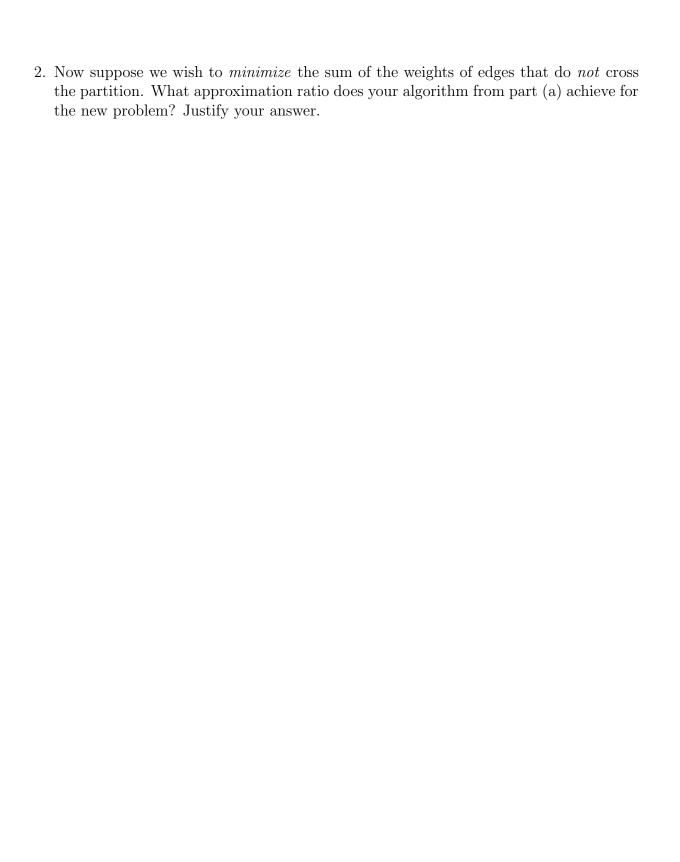
This problem deals with the BIN PACKING PROBLEM. Assume a ship arrives with n containers of weight w_1, \ldots, w_n (all integers). Standing on the dock is a set of trucks, each of which can hold several containers with a total K units of weight (K is an integer, too). The goal is to minimise the number of trucks that are needed to carry all containers. A greedy algorithm you might use is the following.

Start with an empty truck, and begin piling containers 1, 2, 3, ... into it until you get to a container that would overflow the weight limit. The truck is now loaded and you continue with a new truck.

- 1. Give an example of a set of weights, and a value of K, where this algorithm does not use the minimum possible number of trucks.
- 2. Show, however, that the number of trucks used is within a factor of 2 of the optimal solution.

Problem 2

Consider the following heuristic to solve the vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its incident edges. Give an example to show that the heuristic does not have an approximation ratio of 2. Hint: try a bipartite graph with vertices of uniform degree on one side and with vertices of varying degree on the other side.


Problem 3

Consider the following simple greedy algorithm for the knapsack problem: sort the items by decreasing ratio of profit to size and pick objects in that order. Show that the algorithm can be arbitrarily bad!

Problem 4

Given a graph G with edge weights and an integer k, suppose we wish to partition the vertices of G into k subsets S_1, S_2, \ldots, S_k so that the sum of the weights of the edges that cross the partition (i.e., have endpoints in different subsets) is as large as possible.

1. Describe an efficient (1-1/k)-approximation algorithm for this problem.

