
 
Chapter 3 Review Questions 
 
1.  
a) Call this protocol Simple Transport Protocol (STP). At the sender side, STP accepts 

from the sending process a chunk of data not exceeding 1196 bytes, a destination host 
address, and a destination port number. STP adds a four-byte header to each chunk 
and puts the port number of the destination process in this header. STP then gives the 
destination host address and the resulting segment to the network layer. The network 
layer delivers the segment to STP at the destination host. STP then examines the port 
number in the segment, extracts the data from the segment, and passes the data to the 
process identified by the port number.  

 
b) The segment now has two header fields: a source port field and destination port field. 

At the sender side, STP accepts a chunk of data not exceeding 1192 bytes, a 
destination host address, a source port number, and a destination port number.  STP 
creates a segment which contains the application data, source port number, and 
destination port number. It then gives the segment and the destination host address to 
the network layer. After receiving the segment, STP at the receiving host gives the 
application process the application data and the source port number.  
 

c) No, the transport layer does not have to do anything in the core; the transport  layer 
“lives” in the end systems. 
 

2.  
1. For sending a letter, the family member is required to give the delegate the letter 

itself, the address of the destination house, and the name of the recipient. The 
delegate clearly writes the recipient’s name on the top of the letter. The delegate then 
puts the letter in an envelope and writes the address of the destination house on the 
envelope. The delegate then gives the letter to the planet’s mail service. At the 
receiving side, the delegate receives the letter from the mail service, takes the letter 
out of the envelope, and takes note of the recipient name written at the top of the 
letter. The delegate then gives the letter to the family member with this name.  
 

2. No, the mail service does not have to open the envelope; it only examines the address 
on the envelope. 

 
3. Source port number y and destination port number x. 
 
4. An application developer may not want its application to use TCP’s congestion 

control, which can throttle the application’s sending rate at times of congestion. 
Often, designers of IP telephony and IP videoconference applications choose to run 
their applications over UDP because they want to avoid TCP’s congestion control. 
Also, some applications do not need the reliable data transfer provided by TCP. 

 
5. Since most firewalls are configured to block UDP traffic, using TCP for video and 



voice traffic lets the traffic though the firewalls.  
 
6. Yes. The application developer can put reliable data transfer into the application layer 

protocol. This would require a significant amount of work and debugging, however. 
 
7. Yes, both segments will be directed to the same socket. For each received segment, at 

the socket interface, the operating system will provide the process with the IP 
addresses to determine the origins of the individual segments. 

 
8. For each persistent connection, the Web server creates a separate “connection 

socket”. Each connection socket is identified with a four-tuple: (source IP address, 
source port number, destination IP address, destination port number). When host C 
receives and IP datagram, it examines these four fields in the datagram/segment to 
determine to which socket it should pass the payload of the TCP segment. Thus, the 
requests from A and B pass through different sockets. The identifier for both of these 
sockets has 80 for the destination port; however, the identifiers for these sockets have 
different values for source IP addresses. Unlike UDP, when the transport layer passes 
a TCP segment’s payload to the application process, it does not specify the source IP 
address, as this is implicitly specified by the socket identifier. 

 
 
9. Sequence numbers are required for a receiver to find out whether an arriving packet 

contains new data or is a retransmission. 
 
10. To handle losses in the channel. If the ACK for a transmitted packet is not received 

within the duration of the timer for the packet, the packet (or its ACK or NACK) is 
assumed to have been lost. Hence, the packet is retransmitted. 

 
11. A timer would still be necessary in the protocol rdt 3.0. If the round trip time is 

known then the only advantage will be that, the sender knows for sure that either the 
packet or the ACK (or NACK) for the packet has been lost, as compared to the real 
scenario, where the ACK (or NACK) might still be on the way to the sender, after the 
timer expires. However, to detect the loss, for each packet, a timer of constant 
duration will still be necessary at the sender. 
 

12.   
a) The packet loss caused a time out after which all the five packets were   retransmitted. 

 
b) Loss of an ACK didn’t trigger any retransmission as Go-Back-N uses cumulative 

acknowledgements. 
 

c) The sender was unable to send sixth packet as the send window size is fixed to 5.   
 
 
 
 



13.  
a) When the packet was lost, the received four packets were buffered the receiver. After 

the timeout, sender retransmitted the lost packet and receiver delivered the buffered 
packets to application in correct order. 
 

b) Duplicate ACK was sent by the receiver for the lost ACK.    
 

c) The sender was unable to send sixth packet as the send window size is fixed to 5  
 
When a packet was lost, GO-Back-N retransmitted all the packets whereas Selective 
Repeat retransmitted the lost packet only. In case of lost acknowledgement, selective 
repeat sent a duplicate ACK and as GO-Back-N used cumulative acknowledgment, so 
that duplicate ACK was unnecessary. 

 
14.  a) false b)  false    c) true  d) false  e) true   f) false   g) false 
 
15.  a) 20 bytes b) ack number = 90 
 
16. 3 segments. First segment: seq = 43, ack =80; Second segment: seq = 80, ack = 44; 

Third segment; seq = 44, ack = 81 
 
17. R/2 

 
18. False, it is set to half of the current value of the congestion window. 

 
19. Let X = RTTFE, Y = RTTBE and ST = Search time. Consider the following timing 

diagram. 

 



TCP packet exchange diagram between a client and a server (Back End) with a proxy 
(Front End) between them. 
 
From this diagram we see that the total time is 4X + Y+ ST = 4*RTTFE + RTTBE + 
Search time 

 
Chapter 3 Problems 

 

Problem 1  
 

 source port 
numbers 

destination port 
numbers 

a) AS 467 23 
b) BS 513 23 
c) SA 23 467 
d) SB 23 513 

 
e) Yes. 
f) No. 
 

Problem 2 
 
Suppose the IP addresses of the hosts A, B, and C are a, b, c, respectively. (Note that a, b, 
c are distinct.) 
 
To host A: Source port =80, source IP address = b, dest port = 26145, dest IP address = a 
 
To host C, left process: Source port =80, source IP address = b, dest port = 7532, dest IP 
address = c 
 
To host C, right process: Source port =80, source IP address = b, dest port = 26145, dest 
IP address = c 
 

Problem 3 
 
Note, wrap around if overflow. 
 

10011101

01100110

11001010



 
 



01110100

00101110

10011101



 
 
One's complement = 1 1 0 1 0 0 0 1. 
To detect errors, the receiver adds the four words (the three original words and the 
checksum). If the sum contains a zero, the receiver knows there has been an error. All 
one-bit errors will be detected, but two-bit errors can be undetected (e.g., if the last digit 
of the first word is converted to a 0 and the last digit of the second word is converted to a 
1). 
 

Problem 4 
a) Adding the two bytes gives 11000001. Taking the one’s complement gives 00111110.  
 
b) Adding the two bytes gives 01000000; the one’s complement gives 10111111.  
 
c) First byte = 01010100; second byte = 01101101. 
 

Problem 5 
No, the receiver cannot be absolutely certain that no bit errors have occurred. This is 
because of the manner in which the checksum for the packet is calculated. If the 
corresponding bits (that would be added together) of two 16-bit words in the packet were 
0 and 1 then even if these get flipped to 1 and 0 respectively, the sum still remains the 
same. Hence, the 1s complement the receiver calculates will also be the same. This 
means the checksum will verify even if there was transmission error. 
 

Problem 6 
Suppose the sender is in state “Wait for call 1 from above” and the receiver (the receiver 
shown in the homework problem) is in state “Wait for 1 from below.”  The sender sends 
a packet with sequence number 1, and transitions to “Wait for ACK or NAK 1,” waiting 
for an ACK or NAK.  Suppose now the receiver receives the packet with sequence 
number 1 correctly, sends an ACK, and transitions to state “Wait for 0 from below,” 
waiting for a data packet with sequence number 0.  However, the ACK is corrupted.  
When the rdt2.1 sender gets the corrupted ACK, it resends the packet with sequence 
number 1.  However, the receiver is waiting for a packet with sequence number 0 and (as 
shown in the home work problem) always sends a NAK when it doesn't get a packet with 
sequence number 0. Hence the sender will always be sending a packet with sequence 
number 1, and the receiver will always be NAKing that packet.  Neither will progress 
forward from that state. 
 



Problem 7 
To best answer this question, consider why we needed sequence numbers in the first 
place. We saw that the sender needs sequence numbers so that the receiver can tell if a 
data packet is a duplicate of an already received data packet.  In the case of ACKs, the 
sender does not need this info (i.e., a sequence number on an ACK) to tell detect a 
duplicate ACK.  A duplicate ACK is obvious to the rdt3.0 receiver, since when it has 
received the original ACK it transitioned to the next state.  The duplicate ACK is not the 
ACK that the sender needs and hence is ignored by the rdt3.0 sender. 
 

Problem 8 
The sender side of protocol rdt3.0 differs from the sender side of protocol 2.2 in that 
timeouts have been added.  We have seen that the introduction of timeouts adds the 
possibility of duplicate packets into the sender-to-receiver data stream.  However, the 
receiver in protocol rdt.2.2 can already handle duplicate packets. (Receiver-side 
duplicates in rdt 2.2 would arise if the receiver sent an ACK that was lost, and the sender 
then retransmitted the old data).  Hence the receiver in protocol rdt2.2 will also work as 
the receiver in protocol rdt 3.0. 

Problem 9 
Suppose the protocol has been in operation for some time. The sender is in state “Wait 
for call from above” (top left hand corner) and the receiver is in state “Wait for 0 from 
below”. The scenarios for corrupted data and corrupted ACK are shown in Figure 1. 
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Figure 1: rdt 3.0 scenarios: corrupted data, corrupted ACK 
 

Problem 10 
Here, we add a timer, whose value is greater than the known round-trip propagation 
delay.  We add a timeout event to the “Wait for ACK or NAK0” and “Wait for ACK or 
NAK1” states.  If the timeout event occurs, the most recently transmitted packet is 
retransmitted.  Let us see why this protocol will still work with the rdt2.1 receiver. 
 

 Suppose the timeout is caused by a lost data packet, i.e., a packet on the sender-
to-receiver channel.  In this case, the receiver never received the previous 
transmission and, from the receiver's viewpoint, if the timeout retransmission is 
received, it looks exactly the same as if the original transmission is being   
received. 

 Suppose now that an ACK is lost.  The receiver will eventually retransmit the 
packet on a timeout.  But a retransmission is exactly the same action that if an 
ACK is garbled.  Thus the sender's reaction is the same with a loss, as with a 
garbled ACK.  The rdt 2.1 receiver can already handle the case of a garbled ACK. 



 

Problem 11 
If the sending of this message were removed, the sending and receiving sides would 
deadlock, waiting for an event that would never occur.  Here’s a scenario: 
 

 Sender sends pkt0, enter the “Wait for ACK0 state”, and waits for a packet back 
from the receiver 

 Receiver is in the “Wait for 0 from below” state, and receives a corrupted packet 
from the sender.  Suppose it does not send anything back, and simply re-enters the 
‘wait for 0 from below” state. 
   

Now, the ender is awaiting an ACK of some sort from the receiver, and the receiver is 
waiting for a data packet form the sender – a deadlock! 
 

Problem 12 
The protocol would still work, since a retransmission would be what would happen if the 
packet received with errors has actually been lost (and from the receiver standpoint, it 
never knows which of these events, if either, will occur).   
 
To get at the more subtle issue behind this question, one has to allow for premature 
timeouts to occur.  In this case, if each extra copy of the packet is ACKed and each 
received extra ACK causes another extra copy of the current packet to be sent, the 
number of times packet n is sent will increase without bound as n approaches infinity. 
 

Problem 13 
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Problem 14 
 
In a NAK only protocol, the loss of packet x is only detected by the receiver when packet 
x+1 is received. That is, the receivers receives x-1 and then x+1, only when x+1 is 
received does the receiver realize that x was missed. If there is a long delay between the 
transmission of x and the transmission of x+1, then it will be a long time until x can be 
recovered, under a NAK only protocol.  
 
On the other hand, if data is being sent often, then recovery under a NAK-only scheme 
could happen quickly. Moreover, if errors are infrequent, then NAKs are only 
occasionally sent (when needed), and ACK are never sent – a significant reduction in 
feedback in the NAK-only case over the ACK-only case.  

Problem 15  
It takes 12 microseconds (or 0.012 milliseconds) to send a packet, as 1500*8/109=12 
microseconds. In order for the sender to be busy 98 percent of the time, we must have 

012.30/)012.0(98.0 nutil   
or n  approximately 2451 packets. 

Problem 16  
Yes. This actually causes the sender to send a number of pipelined data into the channel.   
Yes. Here is one potential problem.  If data segments are lost in the channel, then the 
sender of rdt 3.0 won’t re-send those segments, unless there are some additional 
mechanism in the application to recover from loss.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Problem 17  
 
 

 
 

Problem 18 
 
In our solution, the sender will wait until it receives an ACK for a pair of messages 
(seqnum and seqnum+1) before moving on to the next pair of messages.  Data packets 
have a data field and carry a two-bit sequence number. That is, the valid sequence 
numbers are 0, 1, 2, and 3. (Note: you should think about why a 1-bit sequence number 
space of 0, 1 only would not work in the solution below.) ACK messages carry the 
sequence number of the data packet they are acknowledging. 
 
The FSM for the sender and receiver are shown in Figure 2.  Note that the sender state 
records whether (i) no ACKs have been received for the current pair, (ii) an ACK for 
seqnum (only) has been received, or an ACK for seqnum+1 (only) has been received. In 
this figure, we assume that the seqnum is initially 0, and that the sender has sent the first 

 Wait: send 
to A 

 Wait: receive 
from A 

rdt_send(data)

packet=make_pkt(data)
udt_send(packet) 

rdt_receive(packet)

extract(packet,data)
deliver_data(data) 
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rdt_unable_to_send(data)
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Rdt_unable_to_send(data)
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 Wait: send 
to B 

 Wait: receive 
from B 

rdt_send(data)

packet=make_pkt(data)
udt_send(packet) 

rdt_receive(packet)

extract(packet,data)
deliver_data(data) 

rdt_send(data)

rdt_unable_to_send(data)

rdt_send(data) 

Rdt_unable_to_send(data)

A 



two data messages (to get things going). A timeline trace for the sender and receiver 
recovering from a lost packet is shown below: 
 
 

 
 
Figure 2: Sender and receiver for Problem (3.18) 
 
    Sender       Receiver 
  
    make pair (0,1)  
    send packet 0 

wait for
pair of
ACKs

wait for
odd
ACK

wait for
even
ACK

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

udt_send(sndpkt, seqnum+1)
start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)

start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
start_timer

timeout

timeout

timeout

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))
||
(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_not_ACK(seqnum)
&& has_not_ACK(seqnum+1) )

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_seq(x)

&& x != seqnum
&& x != seqnum+1

sender

wait for
pair of
data

wait for
odd
data

wait for
even
data

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

udt_send(ACK,seqnum)
seqnum = seqnum+2

udt_send(ACK,seqnum+1)
seqnum = seqnum+2

udt_send(ACK, seqnum+1)

udt_send(ACK, x)

udt_send(ACK, seqnum) udt_send(ACK, seqnum)

udt_send(ACK, seqnum+1)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

receiver



    Packet 0 drops 
    send packet 1 
         receive packet 1 
         buffer packet 1 
           send ACK 1 
    receive ACK 1 
    (timeout) 
    resend packet 0 
             receive packet 0 
         deliver pair (0,1) 
         send ACK 0 
    receive ACK 0 
 
 

Problem 19 
 
This problem is a variation on the simple stop and wait protocol (rdt3.0).  Because the 
channel may lose messages and because the sender may resend a message that one of the 
receivers has already received (either because of a premature timeout or because the other 
receiver has yet to receive the data correctly), sequence numbers are needed.  As in 
rdt3.0, a 0-bit sequence number will suffice here. 
 
The sender and receiver FSM are shown in Figure 3.  In this problem, the sender state 
indicates whether the sender has received an ACK from B (only), from C (only) or from 
neither C nor B. The receiver state indicates which sequence number the receiver is 
waiting for. 
 



 
 
Figure 3. Sender and receiver for Problem 3.19(Problem 19) 
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Problem 20 

rdt_rcv(rcvpkt)&&from_A(rcvpkt) 
 
Λ 

Wait for 
0 from 

A

Wait for 
1 from 

B
rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 
||has_seq0(rcvpkt))&&from_B(rcvpkt) 
 
sndpkt=make_pkt(ACK, 0, checksum) 
udt_send(B,sndpkt) 

Wait for 
0 from 

B

rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)&&ha
s_seq1(rcvpkt)&&from_A(rcvpkt) 

 
extract(rcvpkt,data) 
deliver_data(data) 

sndpkt=make_pkt(ACK,1,checksum) 
udt_send(A,sndpkt) 

rdt_rcv(rcvpkt)&&from_A(rcvpkt) 
 
Λ 

rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)&&
has_seq0(rcvpkt)&&from_B(rcvpkt) 

 
extract(rcvpkt,data) 
deliver_data(data) 

sndpkt=make_pkt(ACK,0,checksum) 
udt_send(B,sndpkt) 

rdt_rcv(rcvpkt)&&from_B(rcvpkt) 
 
Λ 

rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt) 
&&has_seq1(rcvpkt)&&from_B(rcvpkt) 

 
extract(rcvpkt,data) 
deliver_data(data) 

sndpkt=make_pkt(ACK,1,checksum) 
udt_send(B,sndpkt) 

 rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)&&
has_seq0(rcvpkt)&&from_A(rcvpkt) 
 
extract(rcvpkt,data) 
deliver_data(data) 
sndpkt=make_pkt(ACK, 0, checksum) 
udt_send(A,sndpkt) 

rdt_rcv(rcvpkt)&&from_B(rcvpkt) 
 
Λ 

rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 
||has_seq1(rcvpkt))&&from_B(rcvpkt) 
 
sndpkt=make_pkt(ACK, 1, checksum) 
udt_send(B,sndpkt) 

rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 
||has_seq1(rcvpkt))&&from_A(rcvpkt) 
 
sndpkt=make_pkt(ACK, 1, checksum) 
udt_send(A,sndpkt) 

Wait 
for 1 

from A

rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 
||has_seq0(rcvpkt))&&from_A(rcvpkt) 
 
sndpkt=make_pkt(ACK, 0, checksum) 
udt_send(A,sndpkt) 

Figure 4: Receiver side FSM for 3.18 



  Sender 
  The sender side FSM is exactly same as given in Figure 3.15 in text 

 
 

Problem 21 
 
Because the A-to-B channel can lose request messages, A will need to timeout and 
retransmit its request messages (to be able to recover from loss). Because the channel 
delays are variable and unknown, it is possible that A will send duplicate requests (i.e., 
resend a request message that has already been received by B).  To be able to detect 
duplicate request messages, the protocol will use sequence numbers.  A 1-bit sequence 
number will suffice for a stop-and-wait type of request/response protocol. 
A (the requestor) has 4 states: 

 “Wait for Request 0 from above.”  Here the requestor is waiting for a call from 
above to request a unit of data.  When it receives a request from above, it sends a 
request message, R0, to B, starts a timer and makes a transition to the “Wait for 
D0” state.  When in the “Wait for Request 0 from above” state, A ignores 
anything it receives from B. 

 
 “Wait for D0”.  Here the requestor is waiting for a D0 data message from B.  A 

timer is always running in this state.  If the timer expires, A sends another R0 
message, restarts the timer and remains in this state. If a D0 message is received 
from B, A stops the time and transits to the “Wait for Request 1 from above” 
state. If A receives a D1 data message while in this state, it is ignored. 

 
 “Wait for Request 1 from above.”  Here the requestor is again waiting for a call 

from above to request a unit of data. When it receives a request from above, it 
sends a request message, R1, to B, starts a timer and makes a transition to the 
“Wait for D1” state.  When in the “Wait for Request 1 from above” state, A 
ignores anything it receives from B. 

 
 “Wait for D1”. Here the requestor is waiting for a D1 data message from B.  A 

timer is always running in this state.  If the timer expires, A sends another R1 
message, restarts the timer and remains in this state. If a D1 message is received 
from B, A stops the timer and transits to the “Wait for Request 0 from above” 
state. If A receives a D0 data message while in this state, it is ignored. 

 
      The data supplier (B) has only two states: 
 

 “Send D0.” In this state, B continues to respond to received R0 messages by 
sending D0, and then remaining in this state. If B receives a R1 message, then it 
knows its D0 message has been received correctly.  It thus discards this D0 data 
(since it has been received at the other side) and then transits to the “Send D1” 
state, where it will use D1 to send the next requested piece of data. 

 



 “Send D1.” In this state, B continues to respond to received R1 messages by 
sending D1, and then remaining in this state. If B receives a R1 message, then it 
knows its D1 message has been received correctly and thus transits to the “Send 
D1” state. 

 

Problem 22 
 
a) Here we have a window size of N=3.  Suppose the receiver has received packet k-1, 

and has ACKed that and all other preceding packets.  If all of these ACK's have been 
received by sender, then sender's window is [k, k+N-1].  Suppose next that none of 
the ACKs have been received at the sender.  In this second case, the sender's window 
contains k-1 and the N packets up to and including k-1.  The sender's window is thus 
[k-N,k-1]. By these arguments, the senders window is of size 3 and begins 
somewhere in the range [k-N,k]. 
 

b) If the receiver is waiting for packet k, then it has received (and ACKed) packet k-1 
and the N-1 packets before that. If none of those N ACKs have been yet received by 
the sender, then ACK messages with values of [k-N,k-1] may still be propagating 
back.Because the sender has sent packets [k-N, k-1], it must be the case that the 
sender has already received an ACK for k-N-1. Once the receiver has sent an ACK 
for k-N-1 it will never send an ACK that is less that k-N-1.  Thus the range of in-
flight ACK values can range from k-N-1 to k-1.  

 

Problem 23 
 
In order to avoid the scenario of Figure 3.27, we want to avoid having the leading edge of 
the receiver's window (i.e., the one with the “highest” sequence number) wrap around in 
the sequence number space and overlap with the trailing edge (the one with the "lowest" 
sequence number in the sender's window).  That is, the sequence number space must be 
large enough to fit the entire receiver window and the entire sender window without this 
overlap condition.  So - we need to determine how large a range of sequence numbers can 
be covered at any given time by the receiver and sender windows. 
 
Suppose that the lowest-sequence number that the receiver is waiting for is packet m.  In 
this case, it's window is [m,m+w-1] and it has received (and ACKed) packet m-1 and the 
w-1 packets before that, where w is the size of the window. If none of those w ACKs 
have been yet received by the sender, then ACK messages with values of [m-w,m-1] may 
still be propagating back.  If no ACKs with these ACK numbers have been received by 
the sender, then the sender's window would be [m-w,m-1]. 
 
Thus, the lower edge of the sender's window is m-w, and the leading edge of the 
receivers window is m+w-1. In order for the leading edge of the receiver's window to not 
overlap with the trailing edge of the sender's window, the sequence number space must 



thus be big enough to accommodate 2w sequence numbers.  That is, the sequence number 
space must be at least twice as large as the window size, wk 2 . 

Problem 24 
a) True. Suppose the sender has a window size of 3 and sends packets 1, 2, 3 at 0t . At 

1t )01( tt   the receiver ACKS 1, 2, 3. At 2t  )12( tt   the sender times out and 
resends 1, 2, 3.  At 3t  the receiver receives the duplicates and re-acknowledges 1, 2, 
3.  At 4t  the sender receives the ACKs that the receiver sent at 1t  and advances its 
window to 4, 5, 6.  At 5t  the sender receives the ACKs 1, 2, 3 the receiver sent at 2t . 
These ACKs are outside its window. 

 
b) True. By essentially the same scenario as in (a). 
 
c) True. 
 
d) True. Note that with a window size of 1, SR, GBN, and the alternating bit protocol 

are  functionally equivalent. The window size of 1 precludes the possibility of out-of-
order packets (within the window). A cumulative ACK is just an ordinary ACK in 
this situation, since it can only refer to the single packet within the window. 

 

Problem 25 
a) Consider sending an application message over a transport protocol. With TCP, the 

application writes data to the connection send buffer and TCP will grab bytes without 
necessarily putting a single message in the TCP segment; TCP may put more or less 
than a single message in a segment. UDP, on the other hand, encapsulates in a 
segment whatever the application gives it; so that, if the application gives UDP an 
application message, this message will be the payload of the UDP segment. Thus, 
with UDP, an application has more control of what data is sent in a segment.  
 

b) With TCP, due to flow control and congestion control, there may be significant delay 
from the time when an application writes data to its send buffer until when the data is 
given to the network layer. UDP does not have delays due to flow control and 
congestion control. 

 

Problem 26 

There are 2964,294,967,232   possible sequence numbers. 
a) The sequence number does not increment by one with each segment. Rather, it 

increments by the number of bytes of data sent. So the size of the MSS is irrelevant -- 
the maximum size file that can be sent from A to B is simply the number of bytes 

representable by Gbytes 4.19232  . 



b) The number of segments is
8,012,999

536

232










. 66 bytes of header get added to each 
segment giving a total of 528,857,934 bytes of header. The total number of bytes 

transmitted is 
932 10824.4 4528,857,932   bytes. 

Thus it would take 249 seconds to transmit the file over a 155~Mbps link. 

Problem 27 
a) In the second segment from Host A to B, the sequence number is 207, source port 

number is 302 and destination port number is 80. 
b) If the first segment arrives before the second, in the acknowledgement of the first 

arriving segment, the acknowledgement number is 207, the source port number is 80 
and the destination port number is 302. 

c) If the second segment arrives before the first segment, in the acknowledgement of the 
first arriving segment, the acknowledgement number is 127, indicating that it is still 
waiting for bytes 127 and onwards. 

d)  
 
 
 
 
 
 
         
         
 
 
 
 
 
 
 
 
 

 

 

Problem 28 
Since the link capacity is only 100 Mbps, so host A’s sending rate can be at most 
100Mbps. Still, host A sends data into the receive buffer faster than Host B can remove 
data from the buffer. The receive buffer fills up at a rate of roughly 40Mbps. When the 
buffer is full, Host B signals to Host A to stop sending data by setting RcvWindow = 0. 
Host A then stops sending until it receives a TCP segment with RcvWindow > 0. Host A 
will thus repeatedly stop and start sending as a function of the RcvWindow values it 

Ack = 247 

Ack = 247 

Seq = 127, 80 bytes 

Seq = 127, 80 bytes 

Seq = 207, 40 bytes Ack = 207 

Host A Host B 

Timeout 
interval 

Timeout 
interval 



receives from Host B. On average, the long-term rate at which Host A sends data to Host 
B as part of this connection is no more than 60Mbps. 
 

Problem 29 
a) The server uses special initial sequence number (that is obtained from the hash of 

source and destination IPs and ports) in order to defend itself against SYN FLOOD 
attack. 
 

b) No, the attacker cannot create half-open or fully open connections by simply sending 
and ACK packet to the target. Half-open connections are not possible since a server 
using SYN cookies does not maintain connection variables and buffers for any 
connection before full connections are established. For establishing fully open 
connections, an attacker should know the special initial sequence number 
corresponding to the (spoofed) source IP address from the attacker. This sequence 
number requires the "secret" number that each server uses. Since the attacker does not 
know this secret number, she cannot guess the initial sequence number.  
 

c) No, the sever can simply add in a time stamp in computing those initial sequence 
numbers and choose a time to live value for those sequence numbers, and discard 
expired initial sequence numbers even if the attacker replay them.  

 

Problem 30 
a) If timeout values are fixed, then the senders may timeout prematurely. Thus, some 

packets are re-transmitted even they are not lost.  
 
b) If timeout values are estimated (like what TCP does), then increasing the buffer size 

certainly helps to increase the throughput of that router. But there might be one 
potential problem. Queuing delay might be very large, similar to what is shown in 
Scenario 1.  

 
 
Problem 31 

TTEstimatedRxxSampleRTTTTEstimatedR )1(   
DevRTTyTTEstimatedRSampleRTTyDevRTT )1(   

DevRTTTTEstimatedRervalTimeoutInt *4  
 
After obtaining first sampleRTT is   

100*875.0106*125.0 TTEstimatedR   
                           ms75.100 . 

5*75.075.10010625.0 DevRTT  

                ms06.5 . 
06.5*475.100 ervalTimeoutInt  


