Chapter 13.1 — Binary Trees
Chapter 19,20 — Trees and Binary Search Trees (Java Foundations)

Third Edition

Problem Solving with C++ Java Foundations

Introduction to Program Design
and Data Structures

~ WALTER SAVITCH
: e = .

John Lewis | Peter DePasquale | Joseph Chase

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 1

Recall: Nodes and Linked Lists
2

A Linked List:
e can grow and shrink while the program is running
* IS constructed using pointers

o often consists of structs or classes that contain pointers
connecting each other

» Advantages over Arrays and Vectors
e Easy to add and remove elements, slow random access
e Search: O(n)
 Insert at Head O(1), Insert in order or at End: O(n)

head |=——| 10 o 12 »[14 | end

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 2

Slide 13- 2

13.2 Stacks
N e

A stack is a last-in/first-out data structure like the stack of plates
In a cafeteria; adding a plate pushes down the stack and the top

plate is the first one removed
» Used in our PostFix and PostFixRational Expression Evaluators

A Stack

ATy " T “TTY

C
B B
A A A
/r-C /PB /'A
B
A A

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 3
Slide 13- 3

Interface File for a Stack Class B '
/

A StaC k ‘ IaSS //This is the header file stack.h. This is the interface for the class Stack,?’

//which is a class for a stack of symbols.

#ifndef STACK_H
S . e sTACK ¢ [

namespace stacksavitch

Create a stack class to store et StackErame
characters b s
« Adding an item to a stack is StackFrame *1ink;

1

typedef StackFrame* StackFramePtr;

pushing onto the stack
* Member function push will

class Stack

perform this task i
* Removing an item is popping thi Stack();
. //Initializes the object to an empty stack.
item off the stack
. . Stack(const Stack& a_stack);
« Member function pop will perfor //Copy constructor.
thIS taSk ~Stack();

//Destroys the stack and returns all the memory to the freestore.

void push(char the_symbol);
//Postcondition: the_symbol has been added to the stack.

char pop();

//Precondition: The stack is not empty.

//Returns the top symbol on the stack and removes that
//top symbol from the stack.

bool empty() const;
//Returns true if the stack is empty. Returns false otherwise.
private:
StackFramePtr top;
3
}//stacksavitch

S #endif //STACK_H

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

WKI14.1 Slide 4
Slide 13-4

Function push
sy

The push function adds an item to the stack
o [t uses a parameter of the type stored Iin the stack

void push(char the_symbol);

 The same head_insert of the linked list
 For a stack, a pointer named top Is used instead of a pointer
named head

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 5
Slide 13- 5

Function pop
N

The pop function returns the item that was at
the top of the stack
char pop();

 Before popping an item from a stack, pop checks

that the stack is not empty
* pop stores the top item in a local variable result,

and the item is "popped" by: top = top->link;
* A temporary pointer must point to the old top item

so It can be "deleted" to prevent a memory leak
e pop then returns variable result

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 6
Slide 13- 6

Empty Stack
24 |
An empty stack is identified by setting the
top pointer to NULL or nullptr

top = nullptr;

What about memory leaks?
What about the nodes that top pointed to?

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 7

Slide 13- 7

Chapter 13.2 Queues
I

A queue is a data structure that retrieves data in the same order
the data was stored
o If 'A', 'B', and then 'C' are placed in a queue, they will be
removed in the order ‘A', 'B', and then ‘C’
A queue is a first-in/first-out data structure like
the checkout line in a supermarket

DISPLAY 13.20 A Queue

\sA B \;c

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 8
Slide 13- 8

Section 13.2 Conclusion
B e

Can you?

 Give the definition of stack member function push()?
 Know how to tell if a stack is empty?
 Know when to use a queue vs a stack?

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 9
Slide 13- 9

Scope
I

Trees.

= How Google finds websites
» Trees as data structures

* Tree terminology

* Tree iImplementations

* Analyzing tree efficiency

* Tree traversals

= EXpression trees

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 10

Binary Search Trees
11|

Q t /4

A search tree is a tree whose elements are organized to facilitate finding a

particular element when needed

A binary search tree is a binary tree that, for each node n
* the left subtree of n contains elements less than the element stored in n
* the right subtree of n contains elements greater than or equal to the

element stored in n

45
This is how

finds your websites! lilfﬂ{

=N
kY

3 22

BEEN T

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

a1 70

Google e s

Wk14.1 Slide 11

How Google finds Websites
12 |

Web Crawlers search the Internet for new websites
Read every webpage and every word

HUGE files of data — Petabytes!

Data Centers process this data
And Update Google Search Trees
Every webpage, every da

%I
Y

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 12

Google and Amazon Data Centers

it (CRAC)

Un

.

Computer Air Handl

ing

+ Up To 30 Ton Sensible Capacity Per Unit

figuration

+ Downflow Configuration Used With Raised Floor To Create

* Air Discharge Can Be Upflow Or Downflow Con

A Pressurized Supply Air Plenum With Floor Supply Diffusers

ividual Colocation Computer Cabinets

Ind

Power Distribution Unit (PDU)
= Typical Capacities Up To 225 kVA Per Unit
= Redundancy Through Dual PDU's With

H)

» Typical Capacities Of 1750 To 3750 Watts Per Cabinet

* Typ. Cabinet Footprint (28"W x 36"D x 84"

Integral Static Transfer Switch (STS)

1 Generators

1ese
» Total Generator Capacity

Emergency D

Total Electrical Load To Building

Of Generator Operation
« Can Be Located Underground Or At

« Tank Capacity Dependant On Length
Grade Or Indoors

w
=
=
«
e
)
en
&=
T
=]
N
w
o
d
=
=9

Paralleling Gear
» Can Be Located Indoors Or OQutdoors At Grade Or On Roof.

* Multiple Generators Can Be Electrically Combined With
» Outdoor Applications Require Sound Attenuating Enclosures

UPS System
= Uninterruptible Power Supply Modules

* Up To 1000 kVA Per Module

« Modular Configuration For

Colocation Suites

+ Multiple Redundancy Configurations Can Be Designed

imary Switchgear

+ Includes Incoming Service And Distribution

+ Cabinets And Battery Strings Or Rotary Flywheels
+ Direct Distribution To Mechanical Equipment

Secured Partitions (Cages, Walls, Etc.)

Flexible Suite Sq.Ft. Areas.

1Pr

Electrica

+ Distribution To Secondary Electrical Equipment Via UPS

+ Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units

» Additional Equipment Includes Expansion Tank, Glycol Feed System

+ N+1 Design (Standby Pump)

evices

« Drycoolers, Air Cooled Chillers, Etc.
+ Up To 400 Ton Capacity Per Unit
+ Mounted At Grade Or On Roof

Heat Rejection D
+ N+1 Design

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 13

Data Centers — A Closer Look
| 14|

= All this just to update some search trees
pia Some VERY BIG search trees!

Power Dist
Tyt

For more info:
Dr. Mohamed Hefeeda
Big-Data and Multimedia

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 14

Binary Search Trees
15 |

To determine if a particular value exists in a tree
e start at the root
e cOmpare target to element at current node
* move left from current node if target is less than element in the current node
* move right from current node if target is greater than element in the current node

We eventually find the target or hit the end of a path (target is not found)

How to find node with key value 387 g s

= Start at Root and compare 38 to 45

= 38 < 45 so go to left subtree = \ o

= 38 > 12 so go to the right ﬂ'"%

= 38 > 15 s0 go to the right again ‘ 15 T Y I

= 38 <42 s0 go left \

= 38 > 33 s0 go right 2)| 40
= 38 found! 7

= Return Object stored at this node

A o=

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 15

Trees

A Tree looks like an upside-down tree with the root at the top
e elements organized into a hierarchy

 a set of Nodes and Edges connecting those nodes

* Data elements are stored within the nodes
e Each node is located on a particular level
* There is only one root node in the tree

* No Cycles permitted

Root

‘//::///é;fi\\\::::,, Edges
Node Node Node | “—— Nodes
Node Node

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Level O

Level 1

Level 2

Wk14.1 Slide 16

Trees

A
Nodes at the lower level of a tree are the children of nodes at

the previous level

* Nodes can have only one parent, but multiple children

* Nodes that have the same parent are siblings

e The root is the only node which has no parent

Node A is
the Parent of
Nodes D and E

Root

\M\

Root has no Parent

/ Root is Parent of A,B,C

Children of
Node A

Node A Node B

Node C

NN

Node D

Node E

. Siblings

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Level O

Level 1

Level 2

Wk14.1 Slide 17

Tree Terminology

A node that has no children is a leaf node

A node that is not the root and has at least one child is an internal node

A subtree is a tree structure that makes up part of another tree

We can follow a path through a tree from parent to child, starting at the root
A node is an ancestor of a node if it is above it on the path from the root.

root

A

internal
node

'

m

o
o
m

=y B
—

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 18

Trees Terminology
2

Nodes that can be reached by following a path from a particular node are
the descendants of that node
The level of a node is the length of the path from the root to the node

The path length is the number of edges to get from the root to the node
The height of a tree is the length of the longest path from the root to a leaf

/‘
Root
Height = 2 < Node A | | Node B Node C
Node D Node E

—

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Level O

Level 1

Level 2

Wk14.1 Slide 19

Trees — Quiz
RN
What are the descendents of node B?
What is the level of node E?
What is the path length to get from the root to node G?
What is the height of this tree?

| evel
A 0
|
v ¥
& & 1
D E 2
F G 3

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 20

Classifying Trees

.24
Trees can be classified in many ways

One important criterion is the maximum number of children any
node in the tree may have

This may be referred to as the order of the tree

General trees have no limit to the number of children a node
may have

A tree that limits each node to no more than n children is
referred to as an n-ary tree

The tree for a TicTacToe game is an 9-ary tree

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 21

Binary Trees
| 22 |

Trees in which nodes may have at most two children are called

binary trees

Root

/\.

Node A Node B

AN

AN

Node C

Node D Node E

Node F

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 22

Balanced Trees

A tree is balanced if all of the leaves of the tree are on the
same level or within one level of each other

balanced unbalanced

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 23

Full and Complete Trees

A balanced n-ary tree with m elements has a height of log,m
A balanced binary tree with n nodes has a height of log,n

An n-ary tree is full if all leaves of the tree are at the same
height and every non-leaf node has exactly n children

A tree is complete if it is full, or full to the next-to-last level with
all leaves at the bottom level on the left side of the tree

Full Binary Tree Complete Binary Tree
Root Root
Node A Node B Node A Node B

NN N

Node C || Node D Node E || Node F Node C || Node D Node E

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 24

Full and Complete Trees
254
Three complete trees:

1 I T
3 3 v 3 S -
|
A }
a b C

Which trees are full?
Only tree c is full

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 25

Implementing Trees

.24
An obvious choice for implementing trees is a linked structure

struct BinaryTreeNode data
{] left | right

int data;

BinaryTreeNode *left;] X
BinaryTreeNode *right; data data
¥ left | right left | right
struct TertiaryTreeNode data
{ left | middle | right

int data;

TertiaryTreeNode *left; / l \
TertiaryTreeNode *middle; data data data
TertiaryTreeNode *right; left | middle | right left | middle | right left | middle | right
};

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 26

Tree Traversals
2z f
For linear structures, the process of iterating through the
elements is fairly obvious (forwards or backwards)

For non-linear structures like a tree, it iIs more interesting
Let's look at four classic ways of traversing the nodes of a tree
All traversals start at the root of the tree

Each node can be thought of as the root of a subtree
e A tree Is a recursive data structure
e Traversing the tree will require a recursive algorithm

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 27

Tree Traversals
28 |

Preorder :
visit the root, then traverse the subtrees from left to right

Inorder :
traverse left subtree, then the root, then traverse right subtree

Postorder :
traverse the subtrees from left to right, then visit the root

Level-order :
visit each node at each level of the tree from top (root) to

bottom and left to right

Scott Kristjanson — CMPT 135 — SFU
Wk14.1 Slide 28

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Tree Traversals
29 |

Preorder: ABDEZC
Inorder: DBEAZC
Postorder: D E B C A 2
Level-Order: A B C D E v : v
B G
3
D E

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 29

Tree Traversals

%4
Recursion simplifies the implementation of tree traversals

Preorder:

Visit node

Traverse (left child)

Traverse (right child)
Inorder:

Traverse (left child)

Visit node

Traverse (right child)
Postorder:

Traverse (left child)

Traverse (right child)
Visit node

Level-order traversal is more complicated and requires queues

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 30

Expression Trees
| 31 |

An expression tree is a tree that
shows the relationships among

operators and operands in an .
expression ;
An expression tree is evaluated
from the bottom up
- 4
: g (5-3)"4+9

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 31

Decision Trees
32 |

A decision tree Is a tree whose nodes represent decision
points, and whose children represent the options available
The leaves of a decision tree represent the possible
conclusions that might be drawn

A simple decision tree, with yes/no questions, can be modeled
by a binary tree

Decision trees are useful in diagnostic situations (medical, car
repair, etc.)

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 32

Decision Trees
IEE
A simplified decision tree for diagnosing back pain:

Did the pain occur
after a blow or jolt?

/M \

morning stiffness?

N\

runny nose?

N

one arm or leg?

Do you have
Do you have s ;
/g difficulty controlling
your arms or legs?
Do you have Do you have a Do you have pain Emaergency! You
persistent sore throat or or numbness in may have damaged

your spinal cord.

Y N

Sea dosing Yqu may ha_ra See doctor You may have
e . an inflammation to address a respiratory
if pain persists, gy : ;

of the joints. symptoms. infection.

You may You may have
have a sprain a muscle or
or strain. nerve injury.

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 33

Using Trees to Represent Knowledge - TicTacToe

As was seen with LearningPlayer in TicTacToe,
Trees can be used to represent and capture knowledge.

TicTacToe Game Knowledge Tree

empty board | root

0 child

X takes Square 1

X

X takes Square 2

X

O takes

Square 1

O

O takes
Square 9

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

+1

X takes Square 9

L eaf

Wk14.1 Slide 34

Key Things to take away:
e

Trees:
» A tree is a nonlinear structure whose elements form a hierarchy
» Can be stored in an array using simulated link strategy
e Trees can be balanced or non-balanced
* A balanced X-ary tree with n elements has height 1og,n
» Four basic tree traversal methods: preorder, inorder, postorder, level order
e Preorder: visit the node first, then its children left to right
* |Inorder: visit the left child, then the node, then its right child
* Postorder: visit the children left to right, then visit the node itself
» Level-Order: visit all nodes in a level left to right, starting with the root
» Decision Trees can be read from files and used to create an expert system
» Execution Trees can be used to Describe Recursive program flow
» Trees can be used to store and update knowledge for training Al programs

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 35

Binary Search Trees

Binary search tree processing
Using BSTs to solve problems
BST implementations

Strategies for balancing BSTs

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 36

Binary Search Trees

A search tree is a tree whose elements are organized to facilitate finding a
particular element when needed
A binary search tree is a binary tree that, for each node n
* the left subtree of n contains elements less than the element stored in n
* the right subtree of n contains elements greater than or equal to the
element stored in n

45
=
This is how \

Google e it

finds your websites! MR
43 a2
I EE

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 37

How Google finds Websites
|38 |

Web Crawlers search the Internet for new websites
Read every webpage and every word

HUGE files of data — Petabytes!

Data Centers process this data
And Update Google Search Trees
Every webpage, every da

%I
Y

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 38

Google and Amazon Data Centers

it (CRAC)

Un

.

Computer Air Handl

ing

+ Up To 30 Ton Sensible Capacity Per Unit

figuration

+ Downflow Configuration Used With Raised Floor To Create

* Air Discharge Can Be Upflow Or Downflow Con

A Pressurized Supply Air Plenum With Floor Supply Diffusers

ividual Colocation Computer Cabinets

Ind

Power Distribution Unit (PDU)
= Typical Capacities Up To 225 kVA Per Unit
= Redundancy Through Dual PDU's With

H)

» Typical Capacities Of 1750 To 3750 Watts Per Cabinet

* Typ. Cabinet Footprint (28"W x 36"D x 84"

Integral Static Transfer Switch (STS)

1 Generators

1ese
» Total Generator Capacity

Emergency D

Total Electrical Load To Building

Of Generator Operation
« Can Be Located Underground Or At

« Tank Capacity Dependant On Length
Grade Or Indoors

w
=
=
«
e
)
en
&=
T
=]
N
w
o
d
=
=9

Paralleling Gear
» Can Be Located Indoors Or OQutdoors At Grade Or On Roof.

* Multiple Generators Can Be Electrically Combined With
» Outdoor Applications Require Sound Attenuating Enclosures

UPS System
= Uninterruptible Power Supply Modules

* Up To 1000 kVA Per Module

« Modular Configuration For

Colocation Suites

+ Multiple Redundancy Configurations Can Be Designed

imary Switchgear

+ Includes Incoming Service And Distribution

+ Cabinets And Battery Strings Or Rotary Flywheels
+ Direct Distribution To Mechanical Equipment

Secured Partitions (Cages, Walls, Etc.)

Flexible Suite Sq.Ft. Areas.

1Pr

Electrica

+ Distribution To Secondary Electrical Equipment Via UPS

+ Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units

» Additional Equipment Includes Expansion Tank, Glycol Feed System

+ N+1 Design (Standby Pump)

evices

« Drycoolers, Air Cooled Chillers, Etc.
+ Up To 400 Ton Capacity Per Unit
+ Mounted At Grade Or On Roof

Heat Rejection D
+ N+1 Design

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 39

Data Centers — A Closer Look
| 40 |

= All this just to update some search trees
pia Some VERY BIG search trees!

Power Dist
Tyt

For more info:
Dr. Mohamed Hefeeda
Big-Data and Multimedia

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 40

Binary Search Trees
41 |

To determine if a particular value exists in a tree
e start at the root
e cOmpare target to element at current node
* move left from current node if target is less than element in the current node
* move right from current node if target is greater than element in the current node

We eventually find the target or hit the end of a path (target is not found)

How to find node with key value 387 g s

= Start at Root and compare 38 to 45

= 38 < 45 so go to left subtree = \ o

= 38 > 12 so go to the right ﬂ'"%

= 38 > 15 s0 go to the right again ‘ 15 T Y I

= 38 <42 s0 go left \

= 38 > 33 s0 go right 2)| 40
= 38 found! 7

= Return Object stored at this node

A o=

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 41

Binary Search Trees
R

The particular shape of a binary search tree depends on the order In
which the elements are added

The shape may also be dependant on any additional processing
performed on the tree to reshape it

Binary search trees can hold any type of data, so long as we have a way
to determine relative ordering

Objects implementing the Comparable interface provide such capability

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 42

Binary Search Trees
| 43 |
Process of adding an element is similar to finding an element

New elements are added as leaf nodes
Start at the root, follow path dictated by existing elements until

you find no child in the desired direction
Then add the new element

Add 5 Add 7 Add 3 Add 4

R R R

7 8y |

[
N

Scott Kristjanson — CMPT 135 — SFU
Wk14.1 Slide 43

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

BST Element Removal
| 44 |

Removing a target in a BST is not as simple as that for linear data structures
After removing the element, the resulting tree must still be valid
Three distinct situations must be considered when removing an element

1. Node to remove is a leaf

2. Node to remove has one child

3. Node to remove has two children

S tuation 3 | B

Situation

|7'“'_|
Situation 2
| 73 |

14.1 Slide 44

Slides based on Java Foundations, &

BST Element Removal
e)]

Dealing with the situations
*Node is a leaf: it can simply be deleted
*Node has one child: the deleted node is replaced by the child
*Node has two children: an appropriate node is found lower in the tree and
used to replace the node
» Good choice: inorder successor (node that follows in inorder traversal)
* The inorder successor is guaranteed not to have a left child
* Thus, removing the inorder successor to replace the deleted node will
result in one of the first two situations (it's a leaf or has one child)

Initial tree Remove 3 Remove 5 Remove 10
10 10 10 13
L 15 5 15 7 15 7 15
3 7 13 7 13 13

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 45

Balancing BSTs

As operations are performed on a BST, it could become highly
unbalanced (a degenerate tree)

12

18

20

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 46

Balancing BSTs
A
AVL trees and red/black trees ensure the BST stays balanced

We will explore rotations — operations on binary search trees to
assist in the process of keeping a tree balanced

Rotations do not solve all problems created by unbalanced
trees, but show the basic algorithmic processes that are used
to manipulate trees

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 47

Balancing BSTs

A right rotation can be performed at any level of a tree, around the root of
any subtree

Corrects an imbalance caused by a long path in the left subtree of the left
child of the root
To correct the imbalance

* A: Make the left child element of the root the new root element

* B: Make the former root element the right child element of the new root

» C: Make the right child of what was the left child of the former root, the
new left child of the former root

Initial tree Step A Step B Step C
13 7 T f 4
P N /£ N\
¥ 5 15 5 13 5 13 5 13
5 10 3 15 3 15 3 10 15
7 N %
3 10 10

—— et e i ~aves

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 48

Balancing BSTs

A left rotation can be performed at any level of a tree, around the root of any
subtree

Corrects an imbalance caused by a long path in the right subtree of the left
child of the root
To correct the imbalance
» A: Make the right child element of the root the new root element
» B: Make the former root element the left child element of the new root
» C: Make the left child of what was the right child of the former root, the

new right child of the former root
Initial tree Step A Step B Step C
5 10 10 10
N N\ Z '\
3 10 5 13 5 13 5 13
£% Z 7 I N
7 13 3 15 3 15 3 7 15
TN v Y4
15 7 7

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase Wk14.1 Slide 49

Key Things to take away:
'l
Trees — Part 2:

« CMPT 135 introduces trees and tree algorithms
* Will go into more depth in CMPT225 and beyond

* A binary search tree is a binary tree with the added properties
that:

* the left child’s key is less than the parent’s key value
 the right child’s key is more than the parent’s

 this is a recursive definition which results in maintaining
sorted order and allows for O(log,N) searches

» Trees are used to provide efficient implementations for other
collections

 Trees are critical to making the Internet Searching work

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 50

References:

1. J. Lewis, P. DePasquale, and J. Chase., Java Foundations: Introduction to
Program Design & Data Structures. Addison-Wesley, Boston, Massachusetts,
3rd edition, 2014, ISBN 978-0-13-337046-1

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

Wk14.1 Slide 51

