
Wk14.1 Slide 1Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

1

Scott Kristjanson – CMPT 135 – SFU

Chapter 13.1 – Binary Trees
Chapter 19,20 – Trees and Binary Search Trees (Java Foundations)

Wk14.1 Slide 2Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

2

Scott Kristjanson – CMPT 135 – SFU

Recall: Nodes and Linked Lists

10

Slide 13- 2

A Linked List:
• can grow and shrink while the program is running
• is constructed using pointers
• often consists of structs or classes that contain pointers

connecting each other
• Advantages over Arrays and Vectors

• Easy to add and remove elements, slow random access
• Search: O(n)
• Insert at Head O(1), Insert in order or at End: O(n)

12 14 endhead

Wk14.1 Slide 3Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

3

Scott Kristjanson – CMPT 135 – SFU

13.2 Stacks

A stack is a last-in/first-out data structure like the stack of plates
in a cafeteria; adding a plate pushes down the stack and the top
plate is the first one removed

• Used in our PostFix and PostFixRational Expression Evaluators

Slide 13- 3

Wk14.1 Slide 4Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

4

Scott Kristjanson – CMPT 135 – SFU

A Stack Class

Create a stack class to store
characters
•Adding an item to a stack is
pushing onto the stack

•Member function push will
perform this task

•Removing an item is popping the
item off the stack

•Member function pop will perform
this task

Slide 13- 4

Wk14.1 Slide 5Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

5

Scott Kristjanson – CMPT 135 – SFU

Function push

The push function adds an item to the stack
• It uses a parameter of the type stored in the stack

void push(char the_symbol);

• The same head_insert of the linked list
• For a stack, a pointer named top is used instead of a pointer

named head

Slide 13- 5

Wk14.1 Slide 6Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

6

Scott Kristjanson – CMPT 135 – SFU

Function pop

The pop function returns the item that was at
the top of the stack

char pop();
• Before popping an item from a stack, pop checks

that the stack is not empty
• pop stores the top item in a local variable result,

and the item is "popped" by: top = top->link;
• A temporary pointer must point to the old top item
so it can be "deleted" to prevent a memory leak

• pop then returns variable result

Slide 13- 6

Wk14.1 Slide 7Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

7

Scott Kristjanson – CMPT 135 – SFU

Empty Stack

An empty stack is identified by setting the
top pointer to NULL or nullptr

top = nullptr;

What about memory leaks?
What about the nodes that top pointed to?

Slide 13- 7

Wk14.1 Slide 8Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

8

Scott Kristjanson – CMPT 135 – SFU

Chapter 13.2 Queues

A queue is a data structure that retrieves data in the same order
the data was stored

• If 'A', 'B', and then 'C' are placed in a queue, they will be
removed in the order ‘A', 'B', and then ‘C'

A queue is a first-in/first-out data structure like
the checkout line in a supermarket

Slide 13- 8

Wk14.1 Slide 9Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

9

Scott Kristjanson – CMPT 135 – SFU

Section 13.2 Conclusion

Can you?

• Give the definition of stack member function push()?
• Know how to tell if a stack is empty?
• Know when to use a queue vs a stack?

Slide 13- 9

Wk14.1 Slide 10Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

10

Scott Kristjanson – CMPT 135 – SFU

Scope

Trees:
 How Google finds websites
 Trees as data structures
 Tree terminology
 Tree implementations
 Analyzing tree efficiency
 Tree traversals
 Expression trees

Wk14.1 Slide 11Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

11

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

A search tree is a tree whose elements are organized to facilitate finding a
particular element when needed
A binary search tree is a binary tree that, for each node n

• the left subtree of n contains elements less than the element stored in n
• the right subtree of n contains elements greater than or equal to the

element stored in n

This is how

finds your websites!

Wk14.1 Slide 12Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

12

Scott Kristjanson – CMPT 135 – SFU

How Google finds Websites

Web Crawlers search the Internet for new websites
Read every webpage and every word
HUGE files of data – Petabytes!
Data Centers process this data
And Update Google Search Trees
Every webpage, every day

Wk14.1 Slide 13Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

13

Scott Kristjanson – CMPT 135 – SFU

Google and Amazon Data Centers

Wk14.1 Slide 14Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

14

Scott Kristjanson – CMPT 135 – SFU

Data Centers – A Closer Look

All this just to update some search trees
Some VERY BIG search trees!

For more info:
Dr. Mohamed Hefeeda

Big-Data and Multimedia

Wk14.1 Slide 15Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

15

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

To determine if a particular value exists in a tree
•start at the root
• compare target to element at current node
•move left from current node if target is less than element in the current node
•move right from current node if target is greater than element in the current node

We eventually find the target or hit the end of a path (target is not found)

How to find node with key value 38?
 Start at Root and compare 38 to 45
 38 < 45 so go to left subtree
 38 > 12 so go to the right
 38 > 15 so go to the right again
 38 < 42 so go left
 38 > 33 so go right
 38 found!
 Return Object stored at this node

45

12

15

42

33

38

Wk14.1 Slide 16Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

16

Scott Kristjanson – CMPT 135 – SFU

Trees

A Tree looks like an upside-down tree with the root at the top
• elements organized into a hierarchy
• a set of Nodes and Edges connecting those nodes
• Data elements are stored within the nodes
• Each node is located on a particular level
• There is only one root node in the tree
• No Cycles permitted

Nodes

EdgesRoot

Node Node Node

Node Node

Root
Level 0

Level 1

Level 2

Wk14.1 Slide 17Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

17

Scott Kristjanson – CMPT 135 – SFU

Trees

Nodes at the lower level of a tree are the children of nodes at
the previous level

• Nodes can have only one parent, but multiple children
• Nodes that have the same parent are siblings
• The root is the only node which has no parent

Siblings

Root

Node A Node B Node C

Node D Node E

Node A is
the Parent of

Nodes D and E

Level 0

Level 1

Level 2

Children of
Node A

Root has no Parent
Root is Parent of A,B,C

Wk14.1 Slide 18Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

18

Scott Kristjanson – CMPT 135 – SFU

Tree Terminology

A node that has no children is a leaf node
A node that is not the root and has at least one child is an internal node
A subtree is a tree structure that makes up part of another tree
We can follow a path through a tree from parent to child, starting at the root
A node is an ancestor of a node if it is above it on the path from the root.

Wk14.1 Slide 19Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

19

Scott Kristjanson – CMPT 135 – SFU

Trees Terminology

Nodes that can be reached by following a path from a particular node are
the descendants of that node
The level of a node is the length of the path from the root to the node
The path length is the number of edges to get from the root to the node
The height of a tree is the length of the longest path from the root to a leaf

Root

Node A Node B Node C

Node D Node E

Level 0

Level 1

Level 2

Height = 2

Wk14.1 Slide 20Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

20

Scott Kristjanson – CMPT 135 – SFU

Trees – Quiz

What are the descendents of node B?
What is the level of node E?
What is the path length to get from the root to node G?
What is the height of this tree?

Wk14.1 Slide 21Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

21

Scott Kristjanson – CMPT 135 – SFU

Classifying Trees

Trees can be classified in many ways
One important criterion is the maximum number of children any
node in the tree may have
This may be referred to as the order of the tree
General trees have no limit to the number of children a node
may have
A tree that limits each node to no more than n children is
referred to as an n-ary tree

The tree for a TicTacToe game is an 9-ary tree

Wk14.1 Slide 22Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

22

Scott Kristjanson – CMPT 135 – SFU

Binary Trees

Trees in which nodes may have at most two children are called
binary trees

Root

Node A Node B

Node C Node D Node E Node F

Wk14.1 Slide 23Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

23

Scott Kristjanson – CMPT 135 – SFU

Balanced Trees

A tree is balanced if all of the leaves of the tree are on the
same level or within one level of each other

Wk14.1 Slide 24Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

24

Scott Kristjanson – CMPT 135 – SFU

Full and Complete Trees

A balanced n-ary tree with m elements has a height of lognm
A balanced binary tree with n nodes has a height of log2n
An n-ary tree is full if all leaves of the tree are at the same
height and every non-leaf node has exactly n children
A tree is complete if it is full, or full to the next-to-last level with
all leaves at the bottom level on the left side of the tree

Root

Node A Node B

Node C Node D Node E Node F

Full Binary Tree
Root

Node A Node B

Node C Node D Node E

Complete Binary Tree

Wk14.1 Slide 25Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

25

Scott Kristjanson – CMPT 135 – SFU

Full and Complete Trees

Three complete trees:

Which trees are full?
Only tree c is full

Wk14.1 Slide 26Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

26

Scott Kristjanson – CMPT 135 – SFU

Implementing Trees

An obvious choice for implementing trees is a linked structure

struct BinaryTreeNode
{
int data;
BinaryTreeNode *left;
BinaryTreeNode *right;
};

struct TertiaryTreeNode
{
int data;
TertiaryTreeNode *left;
TertiaryTreeNode *middle;
TertiaryTreeNode *right;
};

data
left right

data
left right

data
left right

data
left right middle

Wk14.1 Slide 27Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

27

Scott Kristjanson – CMPT 135 – SFU

Tree Traversals

For linear structures, the process of iterating through the
elements is fairly obvious (forwards or backwards)

For non-linear structures like a tree, it is more interesting

Let's look at four classic ways of traversing the nodes of a tree

All traversals start at the root of the tree

Each node can be thought of as the root of a subtree
• A tree is a recursive data structure
• Traversing the tree will require a recursive algorithm

Wk14.1 Slide 28Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

28

Scott Kristjanson – CMPT 135 – SFU

Tree Traversals

Preorder :
visit the root, then traverse the subtrees from left to right

Inorder :
traverse left subtree, then the root, then traverse right subtree

Postorder :
traverse the subtrees from left to right, then visit the root

Level-order :
visit each node at each level of the tree from top (root) to
bottom and left to right

Wk14.1 Slide 29Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

29

Scott Kristjanson – CMPT 135 – SFU

Tree Traversals

Preorder: A B D E C
Inorder: D B E A C
Postorder: D E B C A
Level-Order: A B C D E

Wk14.1 Slide 30Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

30

Scott Kristjanson – CMPT 135 – SFU

Tree Traversals

Recursion simplifies the implementation of tree traversals
Preorder:

Visit node
Traverse (left child)
Traverse (right child)

Inorder:
Traverse (left child)
Visit node
Traverse (right child)

Postorder:
Traverse (left child)
Traverse (right child)
Visit node

Level-order traversal is more complicated and requires queues

Wk14.1 Slide 31Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

31

Scott Kristjanson – CMPT 135 – SFU

Expression Trees

An expression tree is a tree that
shows the relationships among
operators and operands in an
expression
An expression tree is evaluated
from the bottom up

Wk14.1 Slide 32Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

32

Scott Kristjanson – CMPT 135 – SFU

Decision Trees

A decision tree is a tree whose nodes represent decision
points, and whose children represent the options available
The leaves of a decision tree represent the possible
conclusions that might be drawn
A simple decision tree, with yes/no questions, can be modeled
by a binary tree
Decision trees are useful in diagnostic situations (medical, car
repair, etc.)

Wk14.1 Slide 33Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

33

Scott Kristjanson – CMPT 135 – SFU

Decision Trees

A simplified decision tree for diagnosing back pain:

Wk14.1 Slide 34Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

34

Scott Kristjanson – CMPT 135 – SFU

Using Trees to Represent Knowledge - TicTacToe

As was seen with LearningPlayer in TicTacToe,
Trees can be used to represent and capture knowledge.

empty board

TicTacToe Game Knowledge Tree

X takes Square 1 X takes Square 2 X takes Square 9

X X

X

O

XO X
O takes
Square 9

O takes
Square 1

+1
0 +1

root

Leaf

child

Wk14.1 Slide 35Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

35

Scott Kristjanson – CMPT 135 – SFU

Key Things to take away:

Trees:
• A tree is a nonlinear structure whose elements form a hierarchy
• Can be stored in an array using simulated link strategy
• Trees can be balanced or non-balanced
• A balanced X-ary tree with n elements has height logxn
• Four basic tree traversal methods: preorder, inorder, postorder, level order
• Preorder: visit the node first, then its children left to right
• Inorder: visit the left child, then the node, then its right child
• Postorder: visit the children left to right, then visit the node itself
• Level-Order: visit all nodes in a level left to right, starting with the root
• Decision Trees can be read from files and used to create an expert system
• Execution Trees can be used to Describe Recursive program flow
• Trees can be used to store and update knowledge for training AI programs

Wk14.1 Slide 36Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

36

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

Binary search tree processing
Using BSTs to solve problems
BST implementations
Strategies for balancing BSTs

Wk14.1 Slide 37Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

37

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

A search tree is a tree whose elements are organized to facilitate finding a
particular element when needed
A binary search tree is a binary tree that, for each node n

• the left subtree of n contains elements less than the element stored in n
• the right subtree of n contains elements greater than or equal to the

element stored in n

This is how

finds your websites!

Wk14.1 Slide 38Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

38

Scott Kristjanson – CMPT 135 – SFU

How Google finds Websites

Web Crawlers search the Internet for new websites
Read every webpage and every word
HUGE files of data – Petabytes!
Data Centers process this data
And Update Google Search Trees
Every webpage, every day

Wk14.1 Slide 39Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

39

Scott Kristjanson – CMPT 135 – SFU

Google and Amazon Data Centers

Wk14.1 Slide 40Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

40

Scott Kristjanson – CMPT 135 – SFU

Data Centers – A Closer Look

All this just to update some search trees
Some VERY BIG search trees!

For more info:
Dr. Mohamed Hefeeda

Big-Data and Multimedia

Wk14.1 Slide 41Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

41

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

To determine if a particular value exists in a tree
•start at the root
• compare target to element at current node
•move left from current node if target is less than element in the current node
•move right from current node if target is greater than element in the current node

We eventually find the target or hit the end of a path (target is not found)

How to find node with key value 38?
 Start at Root and compare 38 to 45
 38 < 45 so go to left subtree
 38 > 12 so go to the right
 38 > 15 so go to the right again
 38 < 42 so go left
 38 > 33 so go right
 38 found!
 Return Object stored at this node

45

12

15

42

33

38

Wk14.1 Slide 42Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

42

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

The particular shape of a binary search tree depends on the order in
which the elements are added
The shape may also be dependant on any additional processing
performed on the tree to reshape it
Binary search trees can hold any type of data, so long as we have a way
to determine relative ordering
Objects implementing the Comparable interface provide such capability

Wk14.1 Slide 43Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

43

Scott Kristjanson – CMPT 135 – SFU

Binary Search Trees

Process of adding an element is similar to finding an element
New elements are added as leaf nodes
Start at the root, follow path dictated by existing elements until
you find no child in the desired direction
Then add the new element

Wk14.1 Slide 44Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

44

Scott Kristjanson – CMPT 135 – SFU

BST Element Removal

Removing a target in a BST is not as simple as that for linear data structures
After removing the element, the resulting tree must still be valid
Three distinct situations must be considered when removing an element

1. Node to remove is a leaf
2. Node to remove has one child
3. Node to remove has two children

Wk14.1 Slide 45Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

45

Scott Kristjanson – CMPT 135 – SFU

BST Element Removal

Dealing with the situations
•Node is a leaf: it can simply be deleted
•Node has one child: the deleted node is replaced by the child
•Node has two children: an appropriate node is found lower in the tree and
used to replace the node
• Good choice: inorder successor (node that follows in inorder traversal)
• The inorder successor is guaranteed not to have a left child
• Thus, removing the inorder successor to replace the deleted node will

result in one of the first two situations (it’s a leaf or has one child)

Wk14.1 Slide 46Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

46

Scott Kristjanson – CMPT 135 – SFU

Balancing BSTs

As operations are performed on a BST, it could become highly
unbalanced (a degenerate tree)

Wk14.1 Slide 47Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

47

Scott Kristjanson – CMPT 135 – SFU

Balancing BSTs

AVL trees and red/black trees ensure the BST stays balanced

We will explore rotations – operations on binary search trees to
assist in the process of keeping a tree balanced
Rotations do not solve all problems created by unbalanced
trees, but show the basic algorithmic processes that are used
to manipulate trees

Wk14.1 Slide 48Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

48

Scott Kristjanson – CMPT 135 – SFU

Balancing BSTs

A right rotation can be performed at any level of a tree, around the root of
any subtree
Corrects an imbalance caused by a long path in the left subtree of the left
child of the root
To correct the imbalance

• A: Make the left child element of the root the new root element
• B: Make the former root element the right child element of the new root
• C: Make the right child of what was the left child of the former root, the

new left child of the former root

Wk14.1 Slide 49Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

49

Scott Kristjanson – CMPT 135 – SFU

Balancing BSTs

A left rotation can be performed at any level of a tree, around the root of any
subtree
Corrects an imbalance caused by a long path in the right subtree of the left
child of the root
To correct the imbalance

• A: Make the right child element of the root the new root element
• B: Make the former root element the left child element of the new root
• C: Make the left child of what was the right child of the former root, the

new right child of the former root

Wk14.1 Slide 50Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

50

Scott Kristjanson – CMPT 135 – SFU

Key Things to take away:

Trees – Part 2:
• CMPT 135 introduces trees and tree algorithms
• Will go into more depth in CMPT225 and beyond
• A binary search tree is a binary tree with the added properties

that:
• the left child’s key is less than the parent’s key value
• the right child’s key is more than the parent’s
• this is a recursive definition which results in maintaining

sorted order and allows for O(logxN) searches
• Trees are used to provide efficient implementations for other

collections
• Trees are critical to making the Internet Searching work

Wk14.1 Slide 51Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

51

Scott Kristjanson – CMPT 135 – SFU

References:

1. J. Lewis, P. DePasquale, and J. Chase., Java Foundations: Introduction to
Program Design & Data Structures. Addison-Wesley, Boston, Massachusetts,
3rd edition, 2014, ISBN 978-0-13-337046-1

