Java Foundations Chapter 11 - Analysis of Algorithms
ey

Third Edition

Problem Solving with C++ Java Foundations

Introduction to Program Design
and Data Structures

~ WALTER SAVITCH
: e = .

John Lewis | Peter DePasquale | Joseph Chase

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 1



Scope

Analysis of Algorithms:

» Efficiency goals

* The concept of algorithm analysis

» Big-Oh notation

* The concept of asymptotic complexity
= Comparing various growth functions

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 2



Algorithm Efficiency

The efficiency of an algorithm is usually expressed in terms of
its use of CPU time

The analysis of algorithms involves categorizing an algorithm
in terms of efficiency

An everyday example: washing dishes
« Suppose washing a dish takes 30 seconds and drying a
dish takes an additional 30 seconds
* Therefore, N dishes require N minutes to wash and dry

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 3



Algorithm Efficiency
a4

Now consider a less efficient approach that requires us to dry
all previously washed dishes each time we wash another one

Each dish takes 30 seconds to wash

But because we get the dishes wet while washing,
* must dry the last dish once, the second last twice, etc.
*Drytime=30+2*30+3*30+ ... + (n-1)*30 + n*30
. =30*(1+2+3+...+(n-1)+n)

=n* (30 seconds wash time) + > _ (i *30)
i=1

30n(n+1)

time (n dishes) =30n +

=15n? + 45n seconds

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 4



Problem Size

For every algorithm we want to analyze, we need to define the

size of the problem
The dishwashing problem has a size n
n = number of dishes to be washed/dried

For a search algorithm, the size of the problem is the size of
the search pool

For a sorting algorithm, the size of the program is the number
of elements to be sorted

Scott Kristjanson — CMPT 135 — SFU
Wk13.5 Slide 5

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase



Growth Functions

We must also decide what we are trying to efficiently optimize
 time complexity — CPU time
» Space complexity — memory space

CPU time is generally the focus
A growth function shows the relationship between the size of
the problem (n) and the value optimized (time)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 6



Asymptotic Complexity
29

The growth function of the second dishwashing algorithm is
t(n) = 15n? + 45n

It is not typically necessary to know the exact growth function
for an algorithm

We are mainly interested in the asymptotic complexity of an
algorithm — the general nature of the algorithm as n increases

Scott Kristjanson — CMPT 135 — SFU
Wk13.5 Slide 7

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase



Asymptotic Complexity
I

Asymptotic complexity is based on the dominant term of the growth
function — the term that increases most quickly as n increases

The dominant term for the second dishwashing algorithm is n?:

Number of dishes (n) 15n? 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 | ars B 225 600 ]
10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45.000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000
100,000 150,000,000,000 4,500,000 150,004,500,000
1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000
10,000,000 1.500,000,000,000,000 450,000,000 1,500,000,450,000,000

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 8



Big-Oh Notation
2

The coefficients and the lower order terms become increasingly less
relevant as n increases

So we say that the algorithm is order n2, which is written O(n?)
This is called Big-Oh notation
There are various Big-Oh categories

Two algorithms in the same category are generally considered to have
the same efficiency, but that doesn't mean they have equal growth
functions or behave exactly the same for all values of n

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 9



Big-Oh Categories
.04

Some sample growth functions and their Big-Oh categories:

Growth Function Order Label

tin) = 17 0O(1) constant

I(n) = dlog n O(log n) logarithmic

t(n)=20n -4 - 0(n) lingar

t(n) = 12n log n + 100n Dilr'wmiag n nlog n B
((n) = 3n? 4 5n -2 O(n?) quadratic

t(n) = Bn? + 3n¢ 0(n%) | cubic

i(n) = 2" + 18n? + 3n [,‘1.['.;*"] exponential

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 10



Comparing Growth Functions

o4
You might think that faster processors would make efficient

algorithms less important

A faster CPU helps, but not relative to the dominant term.

What happens if we increase our CPU speed by 10 times?

Algorithm

Time Complexity

Max Problem Size
Before Speedup

Max Problem Size
After Speedup

108

1 165

2. 158

.:: ¢ F.

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Scott Kristjanson — CMPT 135 — SFU

Wk13.5 Slide 11




Comparing Growth Functions

As n increases, the various growth functions diverge
dramatically:

Time

100 = ' . o
.

1 ) 10 15
Input Size (n)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 12



Comparing Growth Functions

IEE [
For large values of n, the difference is even more pronounced:

Time

| 100 200 300 400
Input Size (n)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 13



Analyzing Loop Execution

First determine the order of the body of the loop, then multiply
that by the number of times the loop will execute

for (int count = 0; count < n; count++)
{/* some sequence of 0(1) steps */}

N loop executions times O(1) operations results in a O(n)
efficiency

Can write:
* CPU-time Complexity =n* 0O(1)
. = 0(n*1)

N = O(n)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 14



Analyzing Loop Execution
I

Consider the following loop:

count = 1;
while (count < n)

{

count *= 2;
// some sequence of 0(1) steps

}

The cost of the loop body is constant: it is O(1)
How often is the loop executed given the value of n?
The loop is executed log,n times, so the loop is O(log n)

CPU-Time Efficiency =log n * O(1) = O(log n)

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 15



Analyzing Nested Loops

When loops are nested, we multiply the complexity of the outer loop by the
complexity of the inner loop

for (int count = 0; count < n; count++)
for (int count2 = 0; count2 < n; count2++)

1
}

Both the inner and outer loops have complexity of O(n)
The loop Body has complexity of O(1)

CPU-Time Complexity = O(n)*(O(n) * O(1))
=0(n) * (O(n* 1))
=0(n) " O(n)
= O(n*n) = O(n?)

The overall efficiency is O(n?)

// some sequence of 0(1) steps

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 16



Analyzing Method Calls
A

The body of a loop may contain a call to a method

To determine the order of the loop body, the order of the

method must be taken into account

The overhead of the method call itself is generally ignored

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 17



Analyzing Recursive Algorithms
IR
To analyze the time complexity of a loop:
 determine the time complexity of the body of the loop,
multiplied by the number of loop executions

To determine the time complexity of a recursive method,
« determine the complexity of the method body, multiplied by
the number of times the recursive method is called

In the recursive solution to compute the sum of ints from 1 to N,
the method is invoked N times and the method itself is O(1)

So the order of the overall solution is N*O(1) = O(N)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 18



Complexity of Solution to the Towers of Hanol

For the Towers of Hanoi puzzle, moving one disk is O(1)
But each call to moveTower results in calling itself twice

moveTower(int numDisks, int start, int end, int temp)
{

/* Recursion Base Case */
iIT (humDisks == 1)

moveOneDisk(start, end);
else EL‘L L&

{

/* Recursive Steps */
moveTower(numDisks-1, start, temp, end);

moveOneDisk(start, end); ﬁ é E
moveTower (numDisks-1, temp, end, start);

} Second Move Sixth Move

} Lal | &

Third Move Seventh and Last Move

Original Configuration Fourth Move

First Move Fifth Move

Scott Kristjanson — CMPT 135 — SFU
Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase Wk13.5 Slide 19



Analyzing Recursive Algorithms

For the Towers of Hanoi puzzle, moving one disk is O(1)

But each call to moveTower results in calling itself twice,
so to compute cost for N > 1:
N=1:Ff@Q) =1 =1=21_1
N=2:Ff@) = 2*Ff(n-1) + f(1) =3 =22 -1
N=3:Ff@R) = 2*Ff(n-1) + f(1) =7 =23 -1

N=n:Ff(nh) = Z;finll) + F() 2" — 1

moveTower has exponential cost! f(n)=2"-1 € O(2")

As the number of disks increases, the number of required
moves increases exponentially

Recursion can be elegant, but it can quickly become expensive

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 20



Analyzing Maze Traversal Using Recursion
| 21 |

// Attempts to recursively traverse the maze. Ensures we only try
bool traverse(int row, int column)
{ bool done = false; :

it (maze.validPosition(row, column))

each square once!

{ maze.triedPosition(row, column); // mark this cell as tried
iIT (row == maze.getRows()-1 && column == maze.getColumns()-1)
done = true; // the maze i1s solved
else
{
done = traverse(row+1l, column); // down
1T (!done)
done = traverse(row, column+l); // right
1T ('done)
done = traverse(row-1, column); // up
1T (l'done)
done = traverse(row, column-1); // left
b

1T (done) // this location is part of the final path
maze .markPath(row, column);

}
return done; Since can only check each square once,

Cost of Recursive Maze Traversal is O(row*column)
O(row*column) is optimal! You cannot do better!
Lesson: Don't be afraid of Recursion's cost! Analyze it!

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 21



Interesting Problem from Microbiology

Predicting RNA Secondary Structure
* using Minimum Free Energy (MFE) Models

Problem Statement:
Given:
» an ordered sequence of RNA bases S = (s1, s2, ..., sn)
» where si is over the alphabet {A, C, G, U}
* and s1 denotes the first base on the 5’ end, s2 the second, etc.,

Using Watson-Crick pairings: A-U, C-G, and wobble pair G-U

Find Secondary Structure R such that:
* R described by the set of pairs i,jwith 1 <i<j<n
* The pair i.j denotes that the base indexed i is paired with base indexed j
* For all indexes from 1 to n, no index occurs in more than one pair
 Structure R has minimum free energy (MFE) for all such structures
« MFE estimated as sum energies of the various loops and sub-structures

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 22



Left - a pseudoknot-fee structure (weakly closed) o B
Center - an H-Type pseudoknotted (ABAB) structure
Right - a kissing hairpin (ABACBC)

i | Usg g G T C.G/“-Ll"'&'”c‘l: &5 yos O(N®) time, O(N4) space

_ﬁra-uraaarﬂ-“'ﬁ‘E’E}E

O(N3) time, O(N2) space /
(N9) (N?) sp e A
s 6-0-A-E-0-C T 58

Lo §-6-C-
£ a-e-e-U g
;o 45

O(N%) time, O(N?) space

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 23



Recursion allows RNA Foldings to be solved in Parallel

Search the various possible RNA foldings using search trees
Use Branch and Bound to cut off bad choices
Use Parallelism to search multiple branches at the same time on different CPUs

-~ \ .f’,f——-q—q\—-..q\—a
[ Node V 7N j\\
= | |
. escoms X ) Deq/k ) /)
i sy d
\ Thread Pool

--------------------------------------------------------------------------
L3

Search in Parallel

child V,

child V,

Min Reducer

Eng

Reducer Reducer

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 24



Key Things to take away:
EE
Algorithm Analysis:

» Software must make efficient use of resources such as CPU and memory
« Algorithm Analysis is an important fundamental computer science topic

* The order of an algorithm is found be eliminating constants and all but the
dominant term in the algorithm’s growth function

* When an algorithm is inefficient, a faster processor will not help
» Analyzing algorithms often focuses on analyzing loops

« Time complexity of a loop is found by multiplying the complexity of the loop
body times the number of times the loop is executed.

« Time complexity for nested loops must multiply the inner loop complexity
with the number of times through the outer loop

Scott Kristjanson — CMPT 135 — SFU

Slides based on Java Foundations, 31 Edition, Ch 11 by Lewis, DePasquale, Chase

Wk13.5 Slide 25



