
Wk13.5 Slide 1Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

1

Scott Kristjanson – CMPT 135 – SFU

Java Foundations Chapter 11 - Analysis of Algorithms

Wk13.5 Slide 2Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

2

Scott Kristjanson – CMPT 135 – SFU

Scope

Analysis of Algorithms:
 Efficiency goals
 The concept of algorithm analysis
 Big-Oh notation
 The concept of asymptotic complexity
 Comparing various growth functions

Wk13.5 Slide 3Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

3

Scott Kristjanson – CMPT 135 – SFU

Algorithm Efficiency

The efficiency of an algorithm is usually expressed in terms of
its use of CPU time
The analysis of algorithms involves categorizing an algorithm
in terms of efficiency

An everyday example: washing dishes
• Suppose washing a dish takes 30 seconds and drying a

dish takes an additional 30 seconds
• Therefore, N dishes require N minutes to wash and dry

Wk13.5 Slide 4Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

4

Scott Kristjanson – CMPT 135 – SFU

Algorithm Efficiency

Now consider a less efficient approach that requires us to dry
all previously washed dishes each time we wash another one

Each dish takes 30 seconds to wash
But because we get the dishes wet while washing,

• must dry the last dish once, the second last twice, etc.
• Dry time = 30 + 2*30 + 3* 30 + … + (n-1)*30 + n*30
• = 30 * (1 + 2 + 3 + … + (n-1) + n)

seconds 4515
2

)1(3030dishes) (time

)30*() wash timeseconds 30(*

2

n

1i

nn

nnnn

in






 


Wk13.5 Slide 5Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

5

Scott Kristjanson – CMPT 135 – SFU

Problem Size

For every algorithm we want to analyze, we need to define the
size of the problem

The dishwashing problem has a size n
n = number of dishes to be washed/dried

For a search algorithm, the size of the problem is the size of
the search pool

For a sorting algorithm, the size of the program is the number
of elements to be sorted

Wk13.5 Slide 6Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

6

Scott Kristjanson – CMPT 135 – SFU

Growth Functions

We must also decide what we are trying to efficiently optimize
• time complexity – CPU time
• space complexity – memory space

CPU time is generally the focus
A growth function shows the relationship between the size of
the problem (n) and the value optimized (time)

Wk13.5 Slide 7Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

7

Scott Kristjanson – CMPT 135 – SFU

Asymptotic Complexity

The growth function of the second dishwashing algorithm is

t(n) = 15n2 + 45n

It is not typically necessary to know the exact growth function
for an algorithm

We are mainly interested in the asymptotic complexity of an
algorithm – the general nature of the algorithm as n increases

Wk13.5 Slide 8Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

8

Scott Kristjanson – CMPT 135 – SFU

Asymptotic Complexity

Asymptotic complexity is based on the dominant term of the growth
function – the term that increases most quickly as n increases

The dominant term for the second dishwashing algorithm is n2:

Wk13.5 Slide 9Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

9

Scott Kristjanson – CMPT 135 – SFU

Big-Oh Notation

The coefficients and the lower order terms become increasingly less
relevant as n increases

So we say that the algorithm is order n2, which is written O(n2)

This is called Big-Oh notation

There are various Big-Oh categories

Two algorithms in the same category are generally considered to have
the same efficiency, but that doesn't mean they have equal growth
functions or behave exactly the same for all values of n

Wk13.5 Slide 10Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

10

Scott Kristjanson – CMPT 135 – SFU

Big-Oh Categories

Some sample growth functions and their Big-Oh categories:

Wk13.5 Slide 11Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

11

Scott Kristjanson – CMPT 135 – SFU

Comparing Growth Functions

You might think that faster processors would make efficient
algorithms less important

A faster CPU helps, but not relative to the dominant term.
What happens if we increase our CPU speed by 10 times?

Wk13.5 Slide 12Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

12

Scott Kristjanson – CMPT 135 – SFU

Comparing Growth Functions

As n increases, the various growth functions diverge
dramatically:

Wk13.5 Slide 13Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

13

Scott Kristjanson – CMPT 135 – SFU

Comparing Growth Functions

For large values of n, the difference is even more pronounced:

Wk13.5 Slide 14Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

14

Scott Kristjanson – CMPT 135 – SFU

Analyzing Loop Execution

First determine the order of the body of the loop, then multiply
that by the number of times the loop will execute

for (int count = 0; count < n; count++)
{/* some sequence of O(1) steps */}

N loop executions times O(1) operations results in a O(n)
efficiency

Can write:
• CPU-time Complexity = n * O(1)
• = O(n*1)
• = O(n)

Wk13.5 Slide 15Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

15

Scott Kristjanson – CMPT 135 – SFU

Analyzing Loop Execution

Consider the following loop:
count = 1;
while (count < n)
{

count *= 2;
// some sequence of O(1) steps

}

The cost of the loop body is constant: it is O(1)
How often is the loop executed given the value of n?
The loop is executed log2n times, so the loop is O(log n)

CPU-Time Efficiency = log n * O(1) = O(log n)

Wk13.5 Slide 16Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

16

Scott Kristjanson – CMPT 135 – SFU

Analyzing Nested Loops

When loops are nested, we multiply the complexity of the outer loop by the
complexity of the inner loop

for (int count = 0; count < n; count++)
for (int count2 = 0; count2 < n; count2++)
{

// some sequence of O(1) steps
}

Both the inner and outer loops have complexity of O(n)
The loop Body has complexity of O(1)

CPU-Time Complexity = O(n)*(O(n) * O(1))
= O(n) * (O(n * 1))
= O(n) * O(n)
= O(n*n) = O(n2)

The overall efficiency is O(n2)

Wk13.5 Slide 17Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

17

Scott Kristjanson – CMPT 135 – SFU

Analyzing Method Calls

The body of a loop may contain a call to a method
To determine the order of the loop body, the order of the
method must be taken into account
The overhead of the method call itself is generally ignored

Wk13.5 Slide 18Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

18

Scott Kristjanson – CMPT 135 – SFU

Analyzing Recursive Algorithms

To analyze the time complexity of a loop:
• determine the time complexity of the body of the loop,

multiplied by the number of loop executions
To determine the time complexity of a recursive method,

• determine the complexity of the method body, multiplied by
the number of times the recursive method is called

In the recursive solution to compute the sum of ints from 1 to N,
the method is invoked N times and the method itself is O(1)
So the order of the overall solution is N*O(1) = O(N)

Wk13.5 Slide 19Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

19

Scott Kristjanson – CMPT 135 – SFU

Complexity of Solution to the Towers of Hanoi

For the Towers of Hanoi puzzle, moving one disk is O(1)
But each call to moveTower results in calling itself twice

moveTower(int numDisks, int start, int end, int temp)
{
/* Recursion Base Case */
if (numDisks == 1)

moveOneDisk(start, end);
else
{
/* Recursive Steps */
moveTower(numDisks-1, start, temp, end);
moveOneDisk(start, end);
moveTower(numDisks-1, temp, end, start);
}
}

Wk13.5 Slide 20Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

20

Scott Kristjanson – CMPT 135 – SFU

Analyzing Recursive Algorithms

For the Towers of Hanoi puzzle, moving one disk is O(1)
But each call to moveTower results in calling itself twice,
so to compute cost for N > 1:

N = 1 : f(1) = 1 = 1 = 21 – 1

N = 2 : f(2) = 2*f(n-1) + f(1) = 3 = 22 – 1

N = 3 : f(3) = 2*f(n-1) + f(1) = 7 = 23 – 1
. . .

N = n : f(n) = 2*f(n-1) + f(1) = 2n – 1

moveTower has exponential cost! f(n) = 2n – 1 ∊ O(2n)
As the number of disks increases, the number of required
moves increases exponentially

Recursion can be elegant, but it can quickly become expensive

Wk13.5 Slide 21Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

21

Scott Kristjanson – CMPT 135 – SFU

// Attempts to recursively traverse the maze.
bool traverse(int row, int column)
{ bool done = false;

if (maze.validPosition(row, column))
{ maze.triedPosition(row, column); // mark this cell as tried

if (row == maze.getRows()-1 && column == maze.getColumns()-1)
done = true; // the maze is solved

else
{
done = traverse(row+1, column); // down
if (!done)

done = traverse(row, column+1); // right
if (!done)

done = traverse(row-1, column); // up
if (!done)

done = traverse(row, column-1); // left
}
if (done) // this location is part of the final path

maze.markPath(row, column);
}
return done;

}

Analyzing Maze Traversal Using Recursion

Ensures we only try
each square once!

Since can only check each square once,
Cost of Recursive Maze Traversal is O(row*column)
O(row*column) is optimal! You cannot do better!
Lesson: Don't be afraid of Recursion's cost! Analyze it!

Wk13.5 Slide 22Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

22

Scott Kristjanson – CMPT 135 – SFU

Interesting Problem from Microbiology

Predicting RNA Secondary Structure
• using Minimum Free Energy (MFE) Models

Problem Statement:
Given:

• an ordered sequence of RNA bases S = (s1, s2, …, sn)
• where si is over the alphabet {A, C, G, U}
• and s1 denotes the first base on the 5’ end, s2 the second, etc.,

Using Watson-Crick pairings: A-U, C-G, and wobble pair G-U
Find Secondary Structure R such that:

• R described by the set of pairs i,j with 1 ≤ i < j ≤ n
• The pair i.j denotes that the base indexed i is paired with base indexed j
• For all indexes from 1 to n, no index occurs in more than one pair
• Structure R has minimum free energy (MFE) for all such structures
• MFE estimated as sum energies of the various loops and sub-structures

Wk13.5 Slide 23Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

23

Scott Kristjanson – CMPT 135 – SFU

RNA Structures and Complexity of Predicting their shape

Left - a pseudoknot-fee structure (weakly closed)
Center - an H-Type pseudoknotted (ABAB) structure
Right - a kissing hairpin (ABACBC)

O(N3) time, O(N2) space

O(N4) time, O(N2) space

O(N5) time, O(N4) space

Wk13.5 Slide 24Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

24

Scott Kristjanson – CMPT 135 – SFU

Recursion allows RNA Foldings to be solved in Parallel

Search the various possible RNA foldings using search trees
Use Branch and Bound to cut off bad choices
Use Parallelism to search multiple branches at the same time on different CPUs

Wk13.5 Slide 25Slides based on Java Foundations, 3rd Edition, Ch 11 by Lewis, DePasquale, Chase

25

Scott Kristjanson – CMPT 135 – SFU

Key Things to take away:

Algorithm Analysis:
• Software must make efficient use of resources such as CPU and memory

• Algorithm Analysis is an important fundamental computer science topic

• The order of an algorithm is found be eliminating constants and all but the
dominant term in the algorithm’s growth function

• When an algorithm is inefficient, a faster processor will not help

• Analyzing algorithms often focuses on analyzing loops

• Time complexity of a loop is found by multiplying the complexity of the loop
body times the number of times the loop is executed.

• Time complexity for nested loops must multiply the inner loop complexity
with the number of times through the outer loop

