
Review for Midterm

Instructor: Scott Kristjanson

CMPT 135

SFU Surrey, Spring 2016

Wk04.3 Slide 2Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

2

Scott Kristjanson – CMPT 135 – SFU

What will be covered by the Midterm?

Selected material from these topics:
Assignment 2 - Parts A, B, C1-C2
Assignment 1
UML Diagrams, Data Flow Diagrams, Testing
Chapter 7 - Arrays, Sections 7.1-7.2 only
Chapter 10 - Structs and Classes
Chapter 4 - Functions
Chapter 3 - Loops and Flow of Control
Chapter 2 - C++ Basics and Expressions

Wk04.3 Slide 3Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

3

Scott Kristjanson – CMPT 135 – SFU

Assignment 2 - Parts A, B, C1-C2

A1 - Chapter 10 - Classes (Reviewed in Lab08)
B1 - Class Definition Questions
B2 - Chapter 7 Arrays
B3 - Intro to Inheritance
B4 - Testing
B5 - Data Flow Diagrams
B6 - UML Diagrams
Coding

C1-C4 - Arrays as Parameters to Functions

Wk04.3 Slide 4Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

4

Scott Kristjanson – CMPT 135 – SFU

Assignment 1 Review

A1 - Operator Precedence
A2 - Random Numbers
A3 - Definite Loops (for, for-each)
A4 - Indefinite Loops (while, do-while)
Coding

B1 - Random Numbers
B2 - CMath functions
B3 - Stacks and Expression Processing
B4 - Defining Classes

Wk04.3 Slide 5Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

5

Scott Kristjanson – CMPT 135 – SFU

Logical Operators and Truth Tables

Expressions can be evaluated using truth tables

For example, let’s evaluate the following using a truth table:
!done && (count > MAX)

Wk04.3 Slide 6Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

6

Scott Kristjanson – CMPT 135 – SFU

Midterm will test your Basic Knowledge from Cmpt130

From Cmpt 130, it’s assumed that you will be familiar with the
basic concepts of C programming. (Section numbers refer to
the course text.)

• Data types and Variables (§2.1, 2.3)
• Expressions (§2.3)
• Strings (§2.3, 8.3)
• Conditionals (if-then-else) (§2.4)
• Definite (for) and indefinite (while) loops (§2.4-3.4)
• Functions and Procedures (§4.1-4.5, 5.1).
• Basic terminal input/output (§2.2)

Wk04.3 Slide 7Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

7

Scott Kristjanson – CMPT 135 – SFU

Know the definition of an Object

An object has
• state - time-varying data describes characteristics
• behaviors - what it can do (or what can be done to it)

The state of a bank account includes its account number and
its current balance

The behaviors associated with a bank account include the
ability to make deposits and withdrawals

Note that the behavior of an object often changes its state

Wk04.3 Slide 8Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

8

Scott Kristjanson – CMPT 135 – SFU

Be able to Write a Helper Function

Block comment describes: (Not Required on Quiz/Exams!)
• High level description of what the function does, including side-effects
• Describe each input (if any)
• Describe each output (if any) and return value

Wk04.3 Slide 9Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

9

Scott Kristjanson – CMPT 135 – SFU

Parameters: by Value, by Ref, by Array

When a method is called, the actual parameters in the
invocation are copied into the formal parameters in the method
header

Wk04.3 Slide 10Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

10

Scott Kristjanson – CMPT 135 – SFU

Be Able to Code a Class

Code a Class given a specification using:
• English
• Data Flow Diagram
• UML Graph

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

Report Snake Eye Count

Wk04.3 Slide 11Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

11

Scott Kristjanson – CMPT 135 – SFU

Declaring the Class, Methods, and Members

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

class Gambler
{
public:
Gambler(); // Constructor
int rollTheDice(int MaxRolls);
/* Returns Count of # SnakeEyes */

private:
int roll, count;
Die die1, die2;

};

class Die
{
public:
Die(); // Constructor
int roll();
/* Returns new faceValue */

private:
int faceValue;

};

Report Snake Eye Count

Wk04.3 Slide 12Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

12

Scott Kristjanson – CMPT 135 – SFU

Fill in the code for the Methods
Gambler::Gambler() // Constuctor
{
roll = 0;
count = 0;

}

int Gambler::rollTheDice(int MaxRolls)
{
/* Returns Count of # SnakeEyes */
count = 0;
for (roll=1;roll<=MaxRolls;roll++)
if ((die1.roll()+die2.roll())==2)
count++; // SnakeEyes!

return count;
}

Die::Die() // Constructor
{
srand(time(0));
faceValue = (rand()%6)+1;

}

int Die::roll()
{
// Roll the dice and return faceValue!
faceValue = (rand()%6)+1;
return faceValue;

}

Wk04.3 Slide 13Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

13

Scott Kristjanson – CMPT 135 – SFU

UML Diagrams and Class Relationships

Classes in a software system can have various types of relationships:

Three of the most common relationships:

• Dependency: A uses B
• Aggregation: A has-a B
• Inheritance : A is-a B

Wk04.3 Slide 14Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

14

Scott Kristjanson – CMPT 135 – SFU

Case Study: Production Graph

Problem Definition:
• We are writing a program for the Apex Plastic Spoon Company
• The program will display a bar graph showing the production of each

of four plants for a week
• Each plant has separate records for each department
• Input is entered plant by plant
• Output shows one asterisk for each 1000 units, and production is

rounded to the nearest 1000 units

Slide 7- 14

Wk04.3 Slide 15Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

15

Scott Kristjanson – CMPT 135 – SFU

(a) What is the benefit of encapsulation?

Main benefit is reducing system complexity
• Treat data or object as a black box
• hides implementation details
• hides data details
• Reduces inter-module coupling
• Increases intra-module cohesion

Wk04.3 Slide 16Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

16

Scott Kristjanson – CMPT 135 – SFU

(c) What is the difference between an Object and a Class

A Class is a blue print for an object. It defines a set of
variables, methods, and interfaces but has no state and
reserves no memory space for those variables.

An Object is an instantiation of a Class and is assigned a new
copy of any instance data associated with that class. It has
both state and methods that operate on that state.

Wk04.3 Slide 17Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

17

Scott Kristjanson – CMPT 135 – SFU

(i) Describe what an Abstract Data Type is and why we use them?

An Abstract Data Type (ADT) hides the details about how the
data is implemented, so the user can focus on what it can be
used for.

An ADT allows the implementation to be changed without
impacting users since their interface to the ADT is perserved.

ADTs reduce system complexity by hiding details from users.

Wk04.3 Slide 18Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

18

Scott Kristjanson – CMPT 135 – SFU

(j) What is Inheritance and what is its key benefit?

Inheritance allows derived classes to be created that re-use
the existing methods and data of the base class.

It's key benefit is software re-use. It allows new services to
quickly benefit from existing software features and already
tested designs.

Re-Use results in more reliable software systems that are
produced quicker with less effort.

Wk04.3 Slide 19Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

19

Scott Kristjanson – CMPT 135 – SFU

Questions?

Questions about the Assignment?
Questions about the Midterm?

Wk04.3 Slide 20Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

20

Scott Kristjanson – CMPT 135 – SFU

References:

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN
978-0-13-359174-3

2. T. DeMarco, Structured Analysis and System Specification, 1979,
ISBN 978-0-13-8543808

3. T DeMarco, Structured Analysis, Structural Design and Materials Conference
2001, Software Pioneers, Eds.: M. Broy, E. Denert, Springer 2002
http://cs.txstate.edu/~rp31/papersSP/TDMSpringer2002.pdf

4. Stevens, W., G. Meyers, and L. Constantine, Structured Design, IBM Systems
Journal, Vol 13, No 2. 1974

5. Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, ISBN
0-07-019902-7

