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What will be covered by the Midterm?

Selected material from these topics:
Assignment 2 - Parts A, B, C1-C2
Assignment 1
UML Diagrams, Data Flow Diagrams, Testing
Chapter 7 - Arrays, Sections 7.1-7.2 only
Chapter 10 - Structs and Classes
Chapter 4 - Functions
Chapter 3 - Loops and Flow of Control
Chapter 2 - C++ Basics and Expressions
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Assignment 2 - Parts A, B, C1-C2

A1 - Chapter 10 - Classes (Reviewed in Lab08)
B1 - Class Definition Questions
B2 - Chapter 7 Arrays
B3 - Intro to Inheritance
B4 - Testing
B5 - Data Flow Diagrams
B6 - UML Diagrams
Coding

C1-C4 - Arrays as Parameters to Functions 
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Assignment 1 Review

A1 - Operator Precedence
A2 - Random Numbers
A3 - Definite Loops   (for, for-each)
A4 - Indefinite Loops (while, do-while)
Coding

B1 - Random Numbers
B2 - CMath functions
B3 - Stacks and Expression Processing
B4 - Defining Classes
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Logical Operators and Truth Tables

Expressions can be evaluated using truth tables

For example, let’s evaluate the following using a truth table:
!done && (count > MAX)
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Midterm will test your Basic Knowledge from Cmpt130

From Cmpt 130, it’s assumed that you will be familiar with the 
basic concepts of C programming. (Section numbers refer to 
the course text.)

• Data types and Variables (§2.1, 2.3)
• Expressions (§2.3)
• Strings (§2.3, 8.3)
• Conditionals (if-then-else) (§2.4)
• Definite (for) and indefinite (while) loops (§2.4-3.4)
• Functions and Procedures (§4.1-4.5, 5.1). 
• Basic terminal input/output (§2.2)
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Know the definition of an Object

An object has
• state - time-varying data describes characteristics
• behaviors - what it can do (or what can be done to it)

The state of a bank account includes its account number and 
its current balance

The behaviors associated with a bank account include the 
ability to make deposits and withdrawals

Note that the behavior of an object often changes its state
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Be able to Write a Helper Function

Block comment describes: (Not Required on Quiz/Exams!)
• High level description of what the function does, including side-effects
• Describe each input (if any)
• Describe each output (if any) and return value
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Parameters: by Value, by Ref, by Array

When a method is called, the actual parameters in the 
invocation are copied into the formal parameters in the method 
header
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Be Able to Code a Class

Code a Class given a specification using:
• English
• Data Flow Diagram
• UML Graph

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

Report Snake Eye Count
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Declaring the Class, Methods, and Members

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

class Gambler
{
public:
Gambler(); // Constructor
int rollTheDice(int MaxRolls);
/* Returns Count of # SnakeEyes */

private:
int roll, count;
Die die1, die2;

};

class Die
{
public:
Die();     // Constructor
int roll(); 
/* Returns new faceValue */

private: 
int faceValue;

};

Report Snake Eye Count
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Fill in the code for the Methods
Gambler::Gambler() // Constuctor
{
roll  = 0;
count = 0;

}

int Gambler::rollTheDice(int MaxRolls)
{
/* Returns Count of # SnakeEyes */
count = 0;
for (roll=1;roll<=MaxRolls;roll++)
if ((die1.roll()+die2.roll())==2)
count++; // SnakeEyes!

return count;
}

Die::Die() // Constructor
{
srand(time(0));
faceValue = (rand()%6)+1;

}

int Die::roll() 
{ 
// Roll the dice and return faceValue!  
faceValue = (rand()%6)+1;
return faceValue;

}
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UML Diagrams and Class Relationships

Classes in a software system can have various types of relationships:

Three of the most common relationships:

• Dependency: A uses B
• Aggregation: A has-a B
• Inheritance : A  is-a B
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Case Study: Production Graph

Problem Definition: 
• We are writing a program for the Apex Plastic Spoon Company
• The program will display a bar graph showing the production of each 

of four plants for a week
• Each plant has separate records for each department
• Input is entered plant by plant
• Output shows one asterisk for each 1000 units, and production is

rounded to the nearest 1000 units

Slide 7- 14
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(a) What is the benefit of encapsulation?

Main benefit is reducing system complexity
• Treat data or object as a black box
• hides implementation details
• hides data details
• Reduces inter-module coupling
• Increases intra-module cohesion
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(c) What is the difference between an Object and a Class 

A Class is a blue print for an object. It defines a set of 
variables, methods, and interfaces but has no state and 
reserves no memory space for those variables.

An Object is an instantiation of a Class and is assigned a new 
copy of any instance data associated with that class. It has 
both state and methods that operate on that state.
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(i) Describe what an Abstract Data Type is and why we use them? 

An Abstract Data Type (ADT) hides the details about how the 
data is implemented, so the user can focus on what it can be 
used for. 

An ADT allows the implementation to be changed without 
impacting users since their interface to the ADT is perserved.

ADTs reduce system complexity by hiding details from users.
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(j) What is Inheritance and what is its key benefit?

Inheritance allows derived classes to be created that re-use 
the existing methods and data of the base class.

It's key benefit is software re-use. It allows new services to 
quickly benefit from existing software features and already 
tested designs.

Re-Use results in more reliable software systems that are 
produced quicker with less effort.



Wk04.3 Slide 19Slides based on Problem Solving with C++, 9th Edition, Walter Savitch 

19

Scott Kristjanson – CMPT 135 – SFU

Questions?

Questions about the Assignment?
Questions about the Midterm?
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