
UML Diagrams and
Software Testing

Instructor: Scott Kristjanson

CMPT 135

SFU Surrey, Spring 2016

Wk04.3 Slide 2Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

2

Scott Kristjanson – CMPT 135 – SFU

Encapsulation

An encapsulated object can be thought of as a black box – its
inner workings are hidden from the client
The client invokes the interface methods of the object, which
manages the instance data

Wk04.3 Slide 3Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

3

Scott Kristjanson – CMPT 135 – SFU

Visibility Modifiers

Wk04.3 Slide 4Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

4

Scott Kristjanson – CMPT 135 – SFU

Method Declarations

A method declaration specifies the code that will be executed when
the method is invoked (called)

When a method is invoked, the flow of control jumps to the method and
executes its code

When complete, the flow returns to the place where the method was
called and continues

The invocation may or may not return a value, depending on how the
method is defined

Wk04.3 Slide 5Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

5

Scott Kristjanson – CMPT 135 – SFU

Methods

The flow of control through methods:

Wk04.3 Slide 6Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

6

Scott Kristjanson – CMPT 135 – SFU

Pass by Value Parameters

When a method is called, the actual parameters in the
invocation are copied into the formal parameters in the method
header

Wk04.3 Slide 7Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

7

Scott Kristjanson – CMPT 135 – SFU

Class Relationships

Classes in a software system can have various types of relationships:

Three of the most common relationships:

• Dependency: A uses B
• Aggregation: A has-a B
• Inheritance : A is-a B

Wk04.3 Slide 8Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

8

Scott Kristjanson – CMPT 135 – SFU

UML Diagrams

UML stands for the Unified Modeling Language

UML diagrams show relationships among classes and objects

A UML class diagram consists of one or more classes, each
with sections for the class name, attributes (data), and
operations (methods)

Lines between classes represent associations

A solid arrow shows that one class uses the other (calls its
methods)

Wk04.3 Slide 9Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

9

Scott Kristjanson – CMPT 135 – SFU

Dependency (A uses B)

A dependency exists when one class relies on another in some way,
usually by invoking the methods of the other

We don't want numerous or complex dependencies among classes

Nor do we want complex classes that don't depend on others

A good design strikes the right balance

Wk04.3 Slide 10Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

10

Scott Kristjanson – CMPT 135 – SFU

Aggregation (A has-a B)

An aggregate is an object that is made up of other objects
Therefore aggregation is a has-a relationship

• A car has a chassis

The aggregate object is defined in part by the objects that make it up
This is a special kind of dependency – the aggregate relies on the objects
that compose it

Wk04.3 Slide 11Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

11

Scott Kristjanson – CMPT 135 – SFU

Inheritance (A is-a B)

Derived class IS-A more specific version of its Base Class
Inheritance is indicated by a solid line with a closed, unfilled
arrowhead pointing at the super class

Wk04.3 Slide 12Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

12

Scott Kristjanson – CMPT 135 – SFU

Software Testing - Design and Code Reviews

Review – meeting of several people designed to examine a
design document or section of code
Presenting a design or code causes us to think carefully about
our work and allows others to provide suggestions
Goal of a review is to identify problems
Design review should determine if the system requirements
are satisfied

Wk04.3 Slide 13Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

13

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Testing is also referred to as defect testing
Though we don’t want to have errors, they most certainly exist
A test case is a set of inputs, user actions, or initial conditions,
and the expected output
It is not normally feasible to create test cases for all possible
inputs
It is also not normally necessary to test every single situation

Wk04.3 Slide 14Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

14

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Two approaches to defect testing
• black-box: treats the thing being tested as a black box

• Test cases are developed without regard to the internal workings
• Input data often selected by defining equivalence categories – collection of

inputs that are expected to produce similar outputs
• Example: input to a method that computes the square root can be divided

into two categories: negative and non-negative

Wk04.3 Slide 15Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

15

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Two approaches to defect testing
• white-box: exercises the internal structure and implementation of a

method.
• Test cases are based on the logic of the code under test.
• Goal is to ensure that every path through a program is executed at least

once
• Statement coverage testing – test that maps the possible paths through the

code and ensures that the test case causes every path to be executed

Wk04.3 Slide 16Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

16

Scott Kristjanson – CMPT 135 – SFU

Other Testing Types

Unit Testing – creates a test case for each module of code
that been authored. The goal is to ensure correctness of
individual methods
Integration Testing – modules that were individually tested are
now tested as a collection. This form of testing looks at the
larger picture and determines if bugs are present when
modules are brought together
System Testing – seeks to test the entire software system and
how it adheres to the requirements (also known as alpha or
beta tests)
Regression Testing – seeks to verify that recent changes have
not broken existing functionality. Typically a small subset of
test cases designed to cover key areas of functionality.

Wk04.3 Slide 17Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

17

Scott Kristjanson – CMPT 135 – SFU

Test Driven Development

Developers should write test cases as they develop their
source code
Some developers have adopted a style known as test driven
development

• test cases are written first
• only enough source code is implemented such that the test case will pass

Wk04.3 Slide 18Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

18

Scott Kristjanson – CMPT 135 – SFU

Test Driven Development

Test Driven Development Sequence
1. Create a test case that tests a specific method that has yet to be completed
2. Execute all of the tests cases present and verify that all test cases will pass

except for the most recently implemented test case
3. Develop the method that the test case targets so that the test case will pass

without errors
4. Re-execute all of the test cases and verify that every test case passes,

including the most recently created test case
5. Clean up the code to eliminate redundant portions (refactoring)
6. Repeat the process starting with Step #1

Wk04.3 Slide 19Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

19

Scott Kristjanson – CMPT 135 – SFU

Debugging

Debugging is the act of locating and correcting run-time and
logic errors in programs

Errors can be located in programs in a number of ways
• you may notice a run-time error (program termination)

• you may notice a logic error during execution

Through rigorous testing, we hope to discover all possible
errors. However, typically a few errors slip through into the
final program

A debugger is a software application that aids us in our
debugging efforts

Wk04.3 Slide 20Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

20

Scott Kristjanson – CMPT 135 – SFU

Simple Debugging using cout

Simple debugging during execution can involve the use of
strategic cout statements indicating

• the value of variables and the state of objects at various locations in the code
• the path of execution, usually performed through a series of “it got here”

statements
Consider the case of calling a method

• it may be useful to print the value of each parameter after the method starts
• this is particularly helpful with recursive methods

Wk04.3 Slide 21Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

21

Scott Kristjanson – CMPT 135 – SFU

Debugging Concepts

Formal debuggers generally allow us to
• set one or more breakpoints in the program. This allows to pause the

program at a given point
• print the value of a variable or object
• step into or over a method
• execute the next single statement
• resume execution of the program

Wk04.3 Slide 22Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

22

Scott Kristjanson – CMPT 135 – SFU

References:

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN
978-0-13-359174-3

2. T. DeMarco, Structured Analysis and System Specification, 1979,
ISBN 978-0-13-8543808

3. T DeMarco, Structured Analysis, Structural Design and Materials Conference
2001, Software Pioneers, Eds.: M. Broy, E. Denert, Springer 2002
http://cs.txstate.edu/~rp31/papersSP/TDMSpringer2002.pdf

4. Stevens, W., G. Meyers, and L. Constantine, Structured Design, IBM Systems
Journal, Vol 13, No 2. 1974

5. Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, ISBN
0-07-019902-7

6. IBM DeveloperWorks website, UML basics: The class diagram,
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

