
Designing Classes
Chapter 10

Instructor: Scott Kristjanson

CMPT 135

SFU Surrey, Spring 2016

Wk04.1 Slide 2Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

2

Scott Kristjanson – CMPT 135 – SFU

Scope

Writing your own Classes and Methods:
 Data Flow Diagrams and Structured Analysis
 Identifying classes and objects
 Structure and content of classes
 Member data
 Visibility modifiers
 Method structure
 Constructors
 Relationships among classes
 Friend methods and data

Wk04.1 Slide 3Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

3

Scott Kristjanson – CMPT 135 – SFU

Getting Started

So how does one get started designing a software project?

Do not start by writing Class Definitions – Big Mistake!
Do not start by defining your Data and Attributes – Bigger Mistake!!

Start by thinking about the problem to be solved!
• Write down a description of the problem in words
• What are the “Things” involved? What are the Nouns?
• What actions can can happen to these things? What are the Verbs?

At the top level, the Nouns will become your Object Classes.
• Start drawing the top level objects as Circles on paper or a white board
• Do not worry about how to code this, just draw it out!

Object

Wk04.1 Slide 4Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

4

Scott Kristjanson – CMPT 135 – SFU

Understanding the Problem Statement

Read the problem description
Problem Description:
Write a program to simulate what happens when a
gambler rolls two dice 500 times and then report on
how many SnakeEyes (double ones) were rolled

Before you code it, design it!
Before you design it, understand it!
To understand it, you need to start with requirements!

What are your Requirements?
• What problem is being solved?
• What does your program need to do?
• What specific requirements are specified if any?

Wk04.1 Slide 5Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

5

Scott Kristjanson – CMPT 135 – SFU

Define your Top-Level Objects first

Read the problem description again and identify the Nouns
Problem Description:
Write a program to simulate what happens when a
gambler rolls two dice 500 times and then report on
how many SnakeEyes (double ones) were rolled

Identify the Nouns, these are your top level objects
Next draw and label all the objects at a top level
Do not worry about the details, just draw them out.
You are just trying to understand the problem, not code it!

DiceGambler

Wk04.1 Slide 6Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

6

Scott Kristjanson – CMPT 135 – SFU

Determine the sets of actions, inputs and outputs

Identify the Verbs in the Problem statement:
Write a program to simulate what happens when a gambler
rolls two dice 500 times and then report on how many
SnakeEyes (double ones) were rolled

What Actions can happen to your objects?
• Do these Actions require input? - These become parameters
• Do these Actions request output? - These become return values

These verbs will become your top-level methods
For Now, draw labeled arrows between your Objects to represent Actions

DiceGambler

roll

report

Wk04.1 Slide 7Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

7

Scott Kristjanson – CMPT 135 – SFU

Decompose Complex Objects into Simpler Objects

The Dice object in a diagram represents Two Dice
If that sounds complicated, decompose into simpler objects
Let’s decompose Dice into something simpler: a Die.
We will need two instances of Die for this program

DiceGambler

roll

report

DieDieDiceDie

Dice

Wk04.1 Slide 8Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

8

Scott Kristjanson – CMPT 135 – SFU

But Wait! We are defining Classes not Objects

Our Goal is to define Classes and Methods, not Objects!
The two Die objects are two instances of the same thing.
Map identical objects back into a single class.

DiceGambler

roll

report

DieDieDie Die

Dice

Wk04.1 Slide 9Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

9

Scott Kristjanson – CMPT 135 – SFU

A Data Flow Diagram

Our completed diagram is called a Data Flow Diagram
This design technique is called Structured Analysis[3]

Allows for fast design BEFORE you commit it to code
Easier to change a whiteboard diagram than to modify code!
Next… Validate your the Data Flow Diagram

DiceGambler

roll

report

DieDieDie

Wk04.1 Slide 10Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

10

Scott Kristjanson – CMPT 135 – SFU

Die2

Validating your Data Flow Diagram

Data flow diagrams show data flow, but not flow of control
A Flow of Control is a specific path through the data flow
Run through a test case’s flow of control to test your design
Add State Variables to Objects as needed during your “Run”
Instantiate Objects As Needed

Die1Gambler

roll

report

Start Gambling
roll

faceValue
1

1

Roll = 1

Die1 = 1

Die2 = 1

Count++

faceValue
1

1

x 2

52

Report Snake Eye Count
2

5

2

2
5

& repeat until 500 Rolls

500

CountCount++Count

Wk04.1 Slide 11Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

11

Scott Kristjanson – CMPT 135 – SFU

Designing Classes

Create a C++ Class for each Class in the Data Flow Diagram
Create a corresponding method for each arc in the data flow
Create local variables for each state used in your “Run”

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

Report Snake Eye Count

Wk04.1 Slide 12Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

12

Scott Kristjanson – CMPT 135 – SFU

Declaring the Class, Methods, and Members

DieGambler

roll

report

Roll the Dice

faceValue

Roll

Die1

Die2

Count

class Gambler
{
public:
Gambler(); // Constructor
int rollTheDice(int MaxRolls);
/* Returns Count of # SnakeEyes */

private:
int roll, count;
Die die1, die2;

};

class Die
{
public:
Die(); // Constructor
int roll();
/* Returns new faceValue */

private:
int faceValue;

};

Report Snake Eye Count

Wk04.1 Slide 13Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

13

Scott Kristjanson – CMPT 135 – SFU

Fill in the code for the Methods
Gambler::Gambler() // Constuctor
{
roll = 0;
count = 0;

}

int Gambler::rollTheDice(int MaxRolls)
{
/* Returns Count of # SnakeEyes */
count = 0;
for (roll=1;roll<=MaxRolls;roll++)
if ((die1.roll()+die2.roll())==2)
count++; // SnakeEyes!

return count;
}

Die::Die() // Constructor
{
srand(time(0));
faceValue = (rand()%6)+1;

}

int Die::roll()
{
// Roll the dice and return faceValue!
faceValue = (rand()%6)+1;
return faceValue;

}

Wk04.1 Slide 14Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

14

Scott Kristjanson – CMPT 135 – SFU

And Finally, Create a Main Method and Test

main instantiates a Gambler to test the class
Gambler constructor will instantiate two die objects

int main(int argc, char **argv)
{

const int MAX_ROLLS = 500;
int snakeEyes = 0;
Gambler gambler;

snakeEyes = gambler.rollTheDice(MAX_ROLLS);

cout << "Rolled " << snakeEyes << " Snake-Eyes in "
<< MAX_ROLLS << " rolls" << endl;;

}

Rolled 15 Snake-Eyes in 500 rolls

Wk04.1 Slide 15Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

15

Scott Kristjanson – CMPT 135 – SFU

Inter-Object Coupling

So how do you tell if you have a good design?
Start by looking at Inter-Object Coupling: [4][5]

• Complexity of interfaces
• Number of interfaces
• Amount of shared knowlege

Good Design minimizes interface complexity or “thickness”

DieGambler

roll()

Report(faceValue)

faceValue

Low Coupling = Good Design

EmployeeEmployer

work(x,y,z,a,b,c,d.e)

Report(i,j,k,l,m)

faceValue

High Coupling = Bad Design

annoy(x,c,d.e)

Compain(i,j,k,l,m)

Wk04.1 Slide 16Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

16

Scott Kristjanson – CMPT 135 – SFU

Object Cohesion

Cohesion is a measure of how connected code is.
A well designed object maximizes Cohesion within an
elements of an Object. Good forms of Cohesion include:

• Informational – operates on the same set of internal data objects
• Functional – relate to a single object class or set of functions
• Sequential – methods call other methods as subroutines

Good design minimizes Inter-Object Cohesion

Wk04.1 Slide 17Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

17

Scott Kristjanson – CMPT 135 – SFU

Rules for Good Design

Understand and capture requirements first!
Design before you Code
Top-Down decomposition is essential for solving complex problems
Understanding Dataflow is essential

• Identify all the Nouns and Verbs in your problem statement
• Nouns become Objects
• Verbs become Methods
• Object Data becomes Local Variables
• Data on Arcs become Parameters and Return Values
• Decompose complex objects into simpler objects
• If your Dataflow does not fit on one page, encapsulate Objects until it does

Minimize:
• Interface Complexity
• Inter-Module Coupling

Maximize:
• Intra-Module Cohesion

Wk04.1 Slide 18Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

18

Scott Kristjanson – CMPT 135 – SFU

Classes and Objects

An object has state, defined by the values of its attributes
The attributes are defined by the data associated with the
object's class
An object also has behaviors, defined by the operations
associated with it
Operations are defined by the methods of the class

Wk04.1 Slide 19Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

19

Scott Kristjanson – CMPT 135 – SFU

Classes and Objects

Wk04.1 Slide 20Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

20

Scott Kristjanson – CMPT 135 – SFU

Identifying Classes and Objects

A class represents a group (classification) of objects with the
same behaviors

Generally, classes that represent objects should be given
names that are singular nouns

Examples: Coin, Student, Message
A class represents the concept of one such object

We are free to instantiate as many of each object as needed

Wk04.1 Slide 21Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

21

Scott Kristjanson – CMPT 135 – SFU

Identifying Classes and Objects

One way to find potential objects is by identifying the nouns in
a problem description:

Wk04.1 Slide 22Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

22

Scott Kristjanson – CMPT 135 – SFU

Identifying Classes and Objects

Sometimes it is challenging to decide whether something should be
represented as a class

For example, should an employee's address be represented as a set of
variables or as an Address object

The more you examine the problem and its details the more clear these
issues become

When a class becomes too complex, it often should be decomposed into
multiple smaller classes to distribute the responsibilities

If set of data is used in multiple places, it should be a struct. If it has
multiple methods associated with it, it is a candidate to be a Class.

Wk04.1 Slide 23Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

23

Scott Kristjanson – CMPT 135 – SFU

Identifying Classes and Objects

We want to define classes with the proper amount of detail

For example, it may be unnecessary to create separate classes for each
type of appliance in a house

It may be sufficient to define a more general Appliance class with
appropriate instance data

It all depends on the details of the problem being solved

Wk04.1 Slide 24Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

24

Scott Kristjanson – CMPT 135 – SFU

Identifying Classes and Objects

Part of identifying the classes we need is the process of
assigning responsibilities to each class

Every activity that a program must accomplish must be
represented by one or more methods in one or more classes

We generally use verbs for the names of methods

In early stages it is not necessary to determine every method
of every class – begin with primary responsibilities and evolve
the design

Wk04.1 Slide 25Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

25

Scott Kristjanson – CMPT 135 – SFU

Constructors

A constructor is a special method that is used to set up an
object when it is initially created

A constructor has the same name as the class

The Die constructor is used to set the initial face value of each
new die object to one

Wk04.1 Slide 26Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

26

Scott Kristjanson – CMPT 135 – SFU

Instance Data

The faceValue variable in the Die class is called instance data because
each instance (object) that is created has its own version of it

A class declares the type of the data, but it does not reserve any
memory space for it

Every time a Die object is created, a new faceValue variable is created
as well

The objects of a class share the method definitions, but each object has
its own data space

That's the only way two objects can have different states

Wk04.1 Slide 27Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

27

Scott Kristjanson – CMPT 135 – SFU

Instance Data

We can depict the two Die objects from the SnakeEyes program
as follows:

Each object maintains its own faceValue variable, and thus its own state

die1 5faceValue

die2 2faceValue

Wk04.1 Slide 28Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

28

Scott Kristjanson – CMPT 135 – SFU

UML Diagrams

UML stands for the Unified Modeling Language

UML diagrams show relationships among classes and objects

A UML class diagram consists of one or more classes, each
with sections for the class name, attributes (data), and
operations (methods)

Lines between classes represent associations

A solid arrow shows that one class uses the other (calls its
methods)

Wk04.1 Slide 29Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

29

Scott Kristjanson – CMPT 135 – SFU

UML Diagrams

A UML class diagram showing the classes involved in the
SnakeEyes program:

Wk04.1 Slide 30Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

30

Scott Kristjanson – CMPT 135 – SFU

Encapsulation

We can take one of two views of an object

• internal - the details of the variables and methods of the class that defines it

• external - the services that an object provides and how the object interacts
with the rest of the system

From the external view, an object is an encapsulated entity,
providing a set of specific services

These services define the interface to the object

Wk04.1 Slide 31Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

31

Scott Kristjanson – CMPT 135 – SFU

Encapsulation

One object (called the client) may use another object for the
services it provides

The client of an object may request its services (call its
methods), but it should not have to be aware of how those
services are accomplished

Any changes to an object's state (its variables) should be
made by that object's methods

We should make it difficult, if not impossible, for a client to
access an object’s variables directly

That is, an object should be self-governing

Wk04.1 Slide 32Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

32

Scott Kristjanson – CMPT 135 – SFU

Encapsulation

An encapsulated object can be thought of as a black box – its
inner workings are hidden from the client

The client invokes the interface methods of the object, which
manages the instance data

Wk04.1 Slide 33Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

33

Scott Kristjanson – CMPT 135 – SFU

Visibility Modifiers

Wk04.1 Slide 34Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

34

Scott Kristjanson – CMPT 135 – SFU

Method Declarations

Let’s now examine method declarations in more detail

A method declaration specifies the code that will be executed when the
method is invoked (called)

When a method is invoked, the flow of control jumps to the method and
executes its code

When complete, the flow returns to the place where the method was
called and continues

The invocation may or may not return a value, depending on how the
method is defined

Wk04.1 Slide 35Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

35

Scott Kristjanson – CMPT 135 – SFU

Methods

The flow of control through methods:

Wk04.1 Slide 36Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

36

Scott Kristjanson – CMPT 135 – SFU

Parameters

When a method is called, the actual parameters in the
invocation are copied into the formal parameters in the method
header

Wk04.1 Slide 37Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

37

Scott Kristjanson – CMPT 135 – SFU

Class Relationships

Classes in a software system can have various types of relationships to
each other

Three of the most common relationships:

• Dependency: A uses B
• Aggregation: A has-a B
• Inheritance: A is-a B

Let's discuss dependency and aggregation further

Wk04.1 Slide 38Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

38

Scott Kristjanson – CMPT 135 – SFU

Dependency

A dependency exists when one class relies on another in some way,
usually by invoking the methods of the other

We've seen dependencies in many previous examples

We don't want numerous or complex dependencies among classes

Nor do we want complex classes that don't depend on others

A good design strikes the right balance

Wk04.1 Slide 39Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

39

Scott Kristjanson – CMPT 135 – SFU

Aggregation

An aggregate is an object that is made up of other objects
Therefore aggregation is a has-a relationship

• A car has a chassis
In software, an aggregate object contains references to other objects as
instance data
The aggregate object is defined in part by the objects that make it up
This is a special kind of dependency – the aggregate usually relies on the
objects that compose it

Wk04.1 Slide 40Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

40

Scott Kristjanson – CMPT 135 – SFU

Aggregation in UML

Wk04.1 Slide 41Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

41

Scott Kristjanson – CMPT 135 – SFU

Reviews

Review – meeting of several people designed to examine a
design document or section of code
Presenting a design or code causes us to think carefully about
our work and allows others to provide suggestions
Goal of a review is to identify problems
Design review should determine if the system requirements
are addressed

Wk04.1 Slide 42Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

42

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Testing is also referred to as defect testing
Though we don’t want to have errors, they most certainly exist
A test case is a set of inputs, user actions, or initial conditions,
and the expected output
It is not normally feasible to create test cases for all possible
inputs
It is also not normally necessary to test every single situation

Wk04.1 Slide 43Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

43

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Two approaches to defect testing
• black-box: treats the thing being tested as a black box

• Test cases are developed without regard to the internal workings
• Input data often selected by defining equivalence categories – collection of

inputs that are expected to produce similar outputs
• Example: input to a method that computes the square root can be divided

into two categories: negative and non-negative

Wk04.1 Slide 44Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

44

Scott Kristjanson – CMPT 135 – SFU

Defect Testing

Two approaches to defect testing
• white-box: exercises the internal structure and implementation of a

method.
• Test cases are based on the logic of the code under test.
• Goal is to ensure that every path through a program is executed at least

once
• Statement coverage testing – test that maps the possible paths through the

code and ensures that the test case causes every path to be executed

Wk04.1 Slide 45Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

45

Scott Kristjanson – CMPT 135 – SFU

Other Testing Types

Unit Testing – creates a test case for each module of code
that been authored. The goal is to ensure correctness of
individual methods
Integration Testing – modules that were individually tested are
now tested as a collection. This form of testing looks at the
larger picture and determines if bugs are present when
modules are brought together
System Testing – seeks to test the entire software system and
how it adheres to the requirements (also known as alpha or
beta tests)
Regression Testing – seeks to verify that recent changes have
not broken existing functionality. Typically a small subset of
test cases designed to cover key areas of functionality.

Wk04.1 Slide 46Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

46

Scott Kristjanson – CMPT 135 – SFU

Test Driven Development

Developers should write test cases as they develop their
source code
Some developers have adopted a style known as test driven
development

• test cases are written first
• only enough source code is implemented such that the test case will pass

Wk04.1 Slide 47Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

47

Scott Kristjanson – CMPT 135 – SFU

Test Driven Development

Test Driven Development Sequence
1. Create a test case that tests a specific method that has yet to be completed
2. Execute all of the tests cases present and verify that all test cases will pass

except for the most recently implemented test case
3. Develop the method that the test case targets so that the test case will pass

without errors
4. Re-execute all of the test cases and verify that every test case passes,

including the most recently created test case
5. Clean up the code to eliminate redundant portions (refactoring)
6. Repeat the process starting with Step #1

Wk04.1 Slide 48Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

48

Scott Kristjanson – CMPT 135 – SFU

Debugging

Debugging is the act of locating and correcting run-time and
logic errors in programs

Errors can be located in programs in a number of ways
• you may notice a run-time error (program termination)

• you may notice a logic error during execution

Through rigorous testing, we hope to discover all possible
errors. However, typically a few errors slip through into the
final program

A debugger is a software application that aids us in our
debugging efforts

Wk04.1 Slide 49Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

49

Scott Kristjanson – CMPT 135 – SFU

Simple Debugging using cout

Simple debugging during execution can involve the use of
strategic cout statements indicating

• the value of variables and the state of objects at various locations in the code
• the path of execution, usually performed through a series of “it got here”

statements
Consider the case of calling a method

• it may be useful to print the value of each parameter after the method starts
• this is particularly helpful with recursive methods

Wk04.1 Slide 50Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

50

Scott Kristjanson – CMPT 135 – SFU

Debugging Concepts

Formal debuggers generally allow us to
• set one or more breakpoints in the program. This allows to pause the

program at a given point
• print the value of a variable or object
• step into or over a method
• execute the next single statement
• resume execution of the program

Wk04.1 Slide 51Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

51

Scott Kristjanson – CMPT 135 – SFU

Key Things to take away:

• You tell me! 

Wk04.1 Slide 52Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

52

Scott Kristjanson – CMPT 135 – SFU

References:

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN
978-0-13-359174-3

2. T. DeMarco, Structured Analysis and System Specification, 1979,
ISBN 978-0-13-8543808

3. T DeMarco, Structured Analysis, Structural Design and Materials Conference
2001, Software Pioneers, Eds.: M. Broy, E. Denert, Springer 2002
http://cs.txstate.edu/~rp31/papersSP/TDMSpringer2002.pdf

4. Stevens, W., G. Meyers, and L. Constantine, Structured Design, IBM Systems
Journal, Vol 13, No 2. 1974

5. Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, ISBN
0-07-019902-7

