SFU SIMON FHASER UNIVERSITY
BEURMABY

Designing Classes
Chapter 10

Instructor: Scott Kristjanson
CMPT 135
SFU Surrey, Spring 2016

Problem Solving with C++

Scope
29

Writing your own Classes and Methods:
» Data Flow Diagrams and Structured Analysis
= |dentifying classes and objects

= Structure and content of classes

* Member data

= Visibility modifiers

» Method structure

= Constructors

» Relationships among classes

* Friend methods and data

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 2

Getting Started
sy |
So how does one get started designing a software project?

Do not start by writing Class Definitions — Big Mistake!
Do not start by defining your Data and Attributes — Bigger Mistake!!

Start by thinking about the problem to be solved!
» Write down a description of the problem in words
« What are the “Things” involved? What are the Nouns?
* What actions can can happen to these things? What are the Verbs?

At the top level, the Nouns will become your Object Classes.
 Start drawing the top level objects as Circles on paper or a white board
* Do not worry about how to code this, just draw it out!

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 3

Understanding the Problem Statement

a4
Read the problem description

Problem Description:
Write a program to simulate what happens when a
gambler rolls two dice 500 times and then report on

how many SnakekEyes (double ones) were rolled

Before you code it, design it!
Before you design it, understand it!
To understand it, you need to start with requirements!

What are your Requirements?

* What problem is being solved?
* What does your program need to do?
» What specific requirements are specified if any?

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 4

Define your Top-Level Objects first
sy |
Read the problem description again and identify the Nouns

Problem Description:
Write a program to simulate what happens when a
gambler) rolls two 500 times and then report on
how—many SnakeEyes ¢doOuble ones) were rolled

|ldentify the Nouns, these are your top level objects

Next draw and label all the objects at a top level

Do not worry about the details, just draw them out.

You are just trying to understand the problem, not code it!

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 5

Determine the sets of actions, inputs and outputs

|dentify the Verbs in the Problem statement:

Jrite a program to simulate what hgppens when a gambler
o dice 500 times and the n how many
aRkecyes (double ones) were rolled

What Actions can happen to your objects?

* Do these Actions require input? - These become parameters
* Do these Actions request output? - These become return values

»These verbs will become your top-level methods
=For Now, draw labeled arrows between your Objects to represent Actions

roll

" leport

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 6

Decompose Complex Objects into Simpler Objects

The Dice object in a diagram represents Two Dice

If that sounds complicated, decompose into simpler objects
Let’'s decompose Dice into something simpler: a Die.

We will need two instances of Die for this program

/Dice

roll /

=mvtclh
R report Q /

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 7

But Wait! We are defining Classes not Objects
8 |

Our Goal is to define Classes and Methods, not Objects!
The two Die objects are two instances of the same thing.
Map identical objects back into a single class.

/Dice

i roll / i

Scott Kristjanson — CMP T 13

WkO04.1 Slide 8

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

A Data Flow Diagram
2

Our completed diagram is called a Data Flow Diagram

This design technique is called Structured Analysis!®!

Allows for fast design BEFORE you commit it to code
Easier to change a whiteboard diagram than to modify code!
Next... Validate your the Data Flow Diagram

roll

" leport

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 9

Validating your Data Flow Diagram

10 |
Data flow diagrams show data flow, but not flow of control

A Flow of Control is a specific path through the data flow
Run through a test case’s flow of control to test your design
Add State Variables to Objects as needed during your “Run”

Instantiate Objects As Needed
roll x2 &repeat until 500 Rolls

roll \
\
faceValue faceValue
1 1
Die, = g 2 5
Count \ report
K 2 1 1
Report Snake Eye Count 5

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

Start Gambling

Roll = 500
Die; = 2

WkO04.1 Slide 10

Designing Classes
11|

Create a C++ Class for each Class in the Data Flow Diagram
Create a corresponding method for each arc in the data flow
Create local variables for each state used in your “Run”

Roll the Dice
roll
Roll N
Die, faceValue
Die,

" leport

Report Snake Eye Count

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 11

Declaring the Class, Methods, and Members
12|

class Gambler class Die
{ {
public: public:
Gambler(); // Constructor Die(); // Constructor
int rollTheDice(int MaxRolls); int roll();
/* Returns Count of # SnakeEyes */ /* Returns new faceValue */
prlyate: i private:
int roll, count; int faceValue;
Die diel, die2; _ ’
i };
33
Roll the Dice
roll
Roll N
Die faceValue

Die,

" leport

Report Snake Eye Count
Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 12

Fill in the code for the Methods

Gambler::Gambler() // Constuctor

{
roll = 0;
count = O;
ks
int Gambler::rollTheDice(int MaxRolls)
{
/* Returns Count of # SnakeEkyes */
count = O;

for (roll=1;roll<=MaxRolls;roll++)
iIT ((diel.rollQ+die2.roll())==2)
count++; // SnakeEyes!

return count;

}

Die::Die() // Constructor
{

srand(time(0));

faceValue = (rand(Q%6)+1;

}

int Die::roll(Q
{

// Roll the dice and return faceValue!
faceValue = (rand(Q%6)+1;
return faceValue;

}

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

WkO04.1 Slide 13

And Finally, Create a Main Method and Test
- 0000000000000
maln instantiates a Gambler to test the class

Gambler constructor will instantiate two die objects

int main(int argc, char **argv)
{
const int MAX_ ROLLS
int snakeEyes
Gambler gambler;

500;
0;
snakekEyes = gambler.rollTheDice(MAX ROLLS);

cout << "Rolled " << snakeEyes << " Snake-Eyes in "
<< MAX_ROLLS << ™ rolls”™ << endl;;

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 14

Inter-Object Coupling

15 |
So how do you tell if you have a good design?

Start by looking at Inter-Object Coupling: [#I]

o Complexity of interfaces
 Number of interfaces
 Amount of shared knowlege

Good Design minimizes interface complexity or “thickness”

Low Coupling = Good Design High Coupling = Bad Design
roll() work(x,y.z.a,b,c.d.e)
\ annoy(x,c,dﬁ

faceValue faceValuelEmployee

\ / % Compain(i,j,ky

Report(faceValue) Report(i,j,k,l,m)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 15

Object Cohesion
I

Cohesion is a measure of how connected code is.

A well designed object maximizes Cohesion within an
elements of an Object. Good forms of Cohesion include:
 Informational — operates on the same set of internal data objects

* Functional - relate to a single object class or set of functions
» Sequential — methods call other methods as subroutines

Good design minimizes Inter-Object Cohesion

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 16

Rules for Good Design
T2

Understand and capture requirements first!

Design before you Code

Top-Down decomposition is essential for solving complex problems

Understanding Dataflow is essential

« |dentify all the Nouns and Verbs in your problem statement
* Nouns become Objects
» Verbs become Methods
* Object Data becomes Local Variables
« Data on Arcs become Parameters and Return Values
 Decompose complex objects into simpler objects
o If your Dataflow does not fit on one page, encapsulate Objects until it does
Minimize:
 Interface Complexity
* Inter-Module Coupling
Maximize:

e Intra-Module Cohesion

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 17

Classes and Objects
N

An object has state, defined by the values of its attributes

The attributes are defined by the data associated with the
object's class

An object also has behaviors, defined by the operations
associated with it

Operations are defined by the methods of the class

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 18

Classes and Objects

Attributes Operations
| Student Name Set address
| Address Set major
Major Compute grade point average

Grade point average

Rectangle Length Set length
Width Set width
' Color Set color |
Agquarium Material | Set material
Length | Set length
Width Set width
Height Set height
Compute volume
| Compute filled weight
| Flight Airline Set airline
Flight number Set flight number
| Origin city Determine status
[Destination city
Current status |

Employee | Name Set department
Department Set title
Title Sel salary
Salary Compute wages

Compute bonus
Compute taxes

Scott Kristjanson — CMPT 135 — SFU

WkO04.1 Slide 19

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch

ldentifying Classes and Objects
RN

A class represents a group (classification) of objects with the
same behaviors

Generally, classes that represent objects should be given
names that are singular NOUNS

Examples: Coin, Student, Message

A class represents the concept of one such object

We are free to instantiate as many of each object as needed

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 20

ldentifying Classes and Objects

One way to find potential objects is by identifying the nouns in
a problem description:

must be allnyﬁ(cfm_smw
product’) by its imar haracteristics,”
;EEIEHLEF its(Egigﬁand”?}nduct aumber> If the
: co does not match the len

Cerror’should be generated '

Eﬁﬂ;gntered into g2 The(summary >
KEEEE££)0f all must be structured

as specified in section 7.A.

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 21

ldentifying Classes and Objects
.24

Sometimes it is challenging to decide whether something should be
represented as a class

For example, should an employee's address be represented as a set of
variables or as an Address object

The more you examine the problem and its details the more clear these
ISsues become

When a class becomes too complex, it often should be decomposed into
multiple smaller classes to distribute the responsibilities

If set of data is used in multiple places, it should be a struct. If it has
multiple methods associated with it, it is a candidate to be a Class.

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 22

ldentifying Classes and Objects
234

We want to define classes with the proper amount of detail

For example, it may be unnecessary to create separate classes for each
type of appliance in a house

It may be sufficient to define a more general Appliance class with
appropriate instance data

It all depends on the details of the problem being solved

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 23

ldentifying Classes and Objects
.24 4

Part of identifying the classes we need is the process of
assigning responsibilities to each class

Every activity that a program must accomplish must be
represented by one or more methods in one or more classes

We generally use verbs for the names of methods

In early stages it is not necessary to determine every method
of every class — begin with primary responsibilities and evolve

the design

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 24

Constructors

A constructor is a special method that is used to set up an
object when it is initially created

A constructor has the same name as the class

The pie constructor I1s used to set the initial face value of each
new die object to one

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 25

Instance Data

The faceValue variable in the Die class is called instance data because
each instance (object) that is created has its own version of it

A class declares the type of the data, but it does not reserve any
memory space for it

Every”time a Die object is created, a new faceVvalue variable is created
as we

The objects of a class share the method definitions, but each object has
Its own data space

That's the only way two objects can have different states

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 26

Instance Data
27]

We can depict the two pie objects from the snakeEyes program
as follows:

diel > [faceValue

|

Each object maintains its own faceValue variable, and thus its own state

die2 > [faceValue

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 27

UML Diagrams

.24
UML stands for the Unified Modeling Language

UML diagrams show relationships among classes and objects

A UML class diagram consists of one or more classes, each
with sections for the class name, attributes (data), and
operations (methods)

Lines between classes represent associations

A solid arrow shows that one class uses the other (calls its
methods)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 28

UML Diagrams

A UML class diagram showing the classes involved in the
SnakeEyes program:

SnakeEyes Die

| —MAX :int=6
— faceValue : int

+ roll() : int
+ setFaceValue(value : int) : void
+ getFaceValue() : int
+ toString() : String
|
|

+ main(args : String(]) : void

java.util.Math

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 29

Encapsulation

e J
We can take one of two views of an object

e internal - the details of the variables and methods of the class that defines it

» external - the services that an object provides and how the object interacts
with the rest of the system

From the external view, an object is an encapsulated entity,
providing a set of specific services

These services define the interface to the object

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 30

Encapsulation

One object (called the client) may use another object for the
services it provides

The client of an object may request its services (call its
methods), but it should not have to be aware of how those
services are accomplished

Any changes to an object's state (its variables) should be
made by that object's methods

We should make it difficult, if not impossible, for a client to
access an object’s variables directly

That is, an object should be self-governing

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch WkO04.1 Slide 31

Encapsulation
024

An encapsulated object can be thought of as a black box — its
Inner workings are hidden from the client

The client invokes the interface methods of the object, which
manages the instance data

Client - Methods '
Data

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 32

Visibility Modifiers
IEE

public private
Enforce
Variables encapsulation
. Support other
Methods Provide services methods in the
to clients class

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 33

Method Declarations
3 b

Let’'s now examine method declarations in more detall

A method declaration specifies the code that will be executed when the
method is invoked (called)

When a method is invoked, the flow of control jumps to the method and
executes its code

When complete, the flow returns to the place where the method was
called and continues

The invocation may or may not return a value, depending on how the
method is defined

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 34

Methods
El N

The flow of control through methods:

(3
main
E doThis helpMe
: =1~ -~
v ! ! ! i
obj .deThis() ;| -~ -’ v : E
e kb e =]
:""] helpMe() ; ==<4--+ E
? i | % =
* 4| : :'-rl-n- -------- ’
i I
__l_______j
" J

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 35

Parameters
(36 |]

When a method is called, the actual parameters in the

Invocation are copied into the formal parameters in the method
header

Method
Invacation

ch = obj.calec (25, count, "Hello");

char calc (int numl, int num2, String message)
!

int sum = numl 4+ num:

char result = message.charAt (sum);

return result;

Method
Declaration

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 36

Class Relationships
sz y

Classes in a software system can have various types of relationships to
each other

Three of the most common relationships:
* Dependency: A uses B
» Aggregation: A has-a B
 Inheritance: A is-a B

Let's discuss dependency and aggregation further

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 37

Dependency
sy

A dependency exists when one class relies on another in some way,
usually by invoking the methods of the other

We've seen dependencies in many previous examples

We don't want numerous or complex dependencies among classes

Nor do we want complex classes that don't depend on others

A good design strikes the right balance

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 38

Aggregation
EEC I

An aggregate is an object that is made up of other objects
Therefore aggregation is a has-a relationship

* A car has a chassis
In software, an aggregate object contains references to other objects as

Instance data
The aggregate object is defined in part by the objects that make it up

This is a special kind of dependency — the aggregate usually relies on the
objects that compose it

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 39

Aggregation in UML
44

ClubMember Address
~ firstName : String - streetAddress : String
- lastName : String O— — City : String
- homeAddress : Address — state : String
- workAddress : Address - zipCode : long
+ toString() : String + toString() : String

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 40

Reviews

Review — meeting of several people designed to examine a
design document or section of code

Presenting a design or code causes us to think carefully about
our work and allows others to provide suggestions

Goal of a review is to identify problems

Design review should determine if the system requirements
are addressed

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 41

Defect Testing
R
Testing is also referred to as defect testing

Though we don’t want to have errors, they most certainly exist

A test case is a set of inputs, user actions, or initial conditions,
and the expected output

It is not normally feasible to create test cases for all possible
Inputs

It is also not normally necessary to test every single situation

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 42

Defect Testing

43y
Two approaches to defect testing

» black-box: treats the thing being tested as a black box
» Test cases are developed without regard to the internal workings
 Input data often selected by defining equivalence categories — collection of
inputs that are expected to produce similar outputs
« Example: input to a method that computes the square root can be divided
into two categories: negative and non-negative

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 43

Defect Testing

l4ay
Two approaches to defect testing

» white-box: exercises the internal structure and implementation of a

method.
» Test cases are based on the logic of the code under test.
» Goal is to ensure that every path through a program is executed at least
once
« Statement coverage testing — test that maps the possible paths through the
code and ensures that the test case causes every path to be executed

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch WkO04.1 Slide 44

Other Testing Types

Unit Testing — creates a test case for each module of code
that been authored. The goal is to ensure correctness of
iIndividual methods

Integration Testing — modules that were individually tested are
now tested as a collection. This form of testing looks at the
larger picture and determines if bugs are present when
modules are brought together

System Testing — seeks to test the entire software system and
how it adheres to the requirements (also known as alpha or
beta tests)

Regression Testing — seeks to verify that recent changes have
not broken existing functionality. Typically a small subset of
test cases designed to cover key areas of functionality.

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch WkO04.1 Slide 45

Test Driven Development
N

Developers should write test cases as they develop their

source code

Some developers have adopted a style known as test driven
development

* test cases are written first
* only enough source code is implemented such that the test case will pass

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch WkO04.1 Slide 46

Test Driven Development
IR
Test Driven Development Sequence

1. Create a test case that tests a specific method that has yet to be completed

2. Execute all of the tests cases present and verify that all test cases will pass
except for the most recently implemented test case

3. Develop the method that the test case targets so that the test case will pass
without errors

4. Re-execute all of the test cases and verify that every test case passes,
including the most recently created test case

5. Clean up the code to eliminate redundant portions (refactoring)
6. Repeat the process starting with Step #1

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 47

Debugging
48y

Debugging is the act of locating and correcting run-time and
logic errors in programs

Errors can be located in programs in a number of ways

e YOU May notice a run-time error (program termination)

e yOUu may notice a logic error during execution

Through rigorous testing, we hope to discover all possible
errors. However, typically a few errors slip through into the
final program

A debugger is a software application that aids us in our
debugging efforts

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 48

Simple Debugging using cout
N

Simple debugging during execution can involve the use of
strategic COUT statements indicating

 the value of variables and the state of objects at various locations in the code
 the path of execution, usually performed through a series of “it got here”
statements

Consider the case of calling a method

* it may be useful to print the value of each parameter after the method starts
o this is particularly helpful with recursive methods

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 49

Debugging Concepts
sy

Formal debuggers generally allow us to

» set one or more breakpoints in the program. This allows to pause the
program at a given point

print the value of a variable or object

step into or over a method

execute the next single statement

resume execution of the program

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 50

Key Things to take away:
IR 1

e You tell me! ©

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 51

References:
EXEE

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN
978-0-13-359174-3
2. T.DeMarco, Structured Analysis and System Specification, 1979,
ISBN 978-0-13-8543808

3. T DeMarco, Structured Analysis, Structural Design and Materials Conference
2001, Software Pioneers, Eds.: M. Broy, E. Denert, Springer 2002
http://cs.txstate.edu/~rp31/papersSP/TDMSpringer2002.pdf

4. Stevens, W., G. Meyers, and L. Constantine, Structured Design, IBM Systems
Journal, Vol 13, No 2. 1974

5. Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, ISBN
0-07-019902-7

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9th Edition, Walter Savitch Wk04.1 Slide 52

