
Wk02.1 Slide 1Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

1

Scott Kristjanson – CMPT 135 – SFU

Review: Expressions, Variables, Loops, and more.

An Expression Evaluator Example [2]

Wk02.1 Slide 2Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

2

Scott Kristjanson – CMPT 135 – SFU

Case Study : Parsing PostFix Expressions

What is an expression?
• A series of symbols that return some value when evaluated
• Syntax rules determine if an expression is valid or not
• Operators act on expressions to create new expressions
• C++ has lots of expressions and expression operators

• Arithmetic : 1+3, 3-4, 5*6, 15/10, 15%10, 15/10.0
• Variables : a, b, myVar, Fred, argv
• Logical : a&&b, a||b (What do these equal if a=1 and b=0?)
• Relational : a<b, a>b, a==b, a!=b, a<b

The Expression Parsing Problem:
• Write a program that evaluates arithmetic expressions
• For example: what does 43.2 / (100 + 5) evaluate to?
• We call such programs an Expression Evaluator
• Evaluating C++ expressions is a tricky problem!
• Reverse Polish Notation (RPN) or PostFix is much simpler!

Wk02.1 Slide 3Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

3

Scott Kristjanson – CMPT 135 – SFU

PostFix Expressions

C++ arithmetic expressions like 5+2 are in Infix notation
• That means that binary operators go in-between the operands

PostFix Expressions place the operator after the operands
• So in PostFix, 5+2 is expressed as: 5 2 +

As few simple examples:
1 2 + is 3, because it means 1+2
4 7 – is -3, because it means 4-7
3 4 * is 12, because it means 3*4
8 4 / is 2, because it means 8/4

We will write a PostFix Expression Evaluator in C++

Wk02.1 Slide 4Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

4

Scott Kristjanson – CMPT 135 – SFU

Evaluating PostFix Expressions

It gets more complex when there is more than one operator.
How would we write the infix expression 1 + 2 * 3 in postfix?

Since * is always evaluated before + with infix, we get this
postfix expression: 2 3 * 1 +

You evaluate starting at the left, and apply an operator to the
two operands immediately proceeding it.
2 3 * 1 +
 6 1 +
 7

After evaluating an operator, you replace the numbers and
operand with the new value.

Wk02.1 Slide 5Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

5

Scott Kristjanson – CMPT 135 – SFU

More PostFix Example Expressions

Now let’s write the infix expression (1 + 2) * 3 in postfix
This time + is evaluated before * because of the brackets

The postfix expression is:
1 2 + 3 *

It is evaluated in these steps:
1 2 + 3 *  3 3 *  9

The area of a circle π r2 is written: pi * r * r in infix notation

In postfix, it could be written as pi r * r * or r r * pi *

Wk02.1 Slide 6Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

6

Scott Kristjanson – CMPT 135 – SFU

Stacks

To evaluate a postfix expression, we need to introduce the
idea of a stack, which is a simple data structure that lets us
add and remove items at the top of the stack only.

Pictorially, we’ll draw a stack as a box with no top
Here’s an empty stack:

Empty Stack

Top of Stack

Bottom of Stack

Wk02.1 Slide 7Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

7

Scott Kristjanson – CMPT 135 – SFU

Pushing Items Onto a Stack

Adding an element to a stack is called Pushing an element
Function push() is used to push an element onto the stack

For example:
Here is what the stack looks like after we push 5 onto it:

Top of Stack = 5

5 Bottom of Stack = 5

Wk02.1 Slide 8Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

8

Scott Kristjanson – CMPT 135 – SFU

Pushing Always Adds Elements to the Top

After pushing 3 onto a stack already containing 5:

Whenever you push an element, it becomes the new Top.
Let’s push 4:

Top of Stack = 3

3
5 Bottom of Stack = 5

4
3
5

Top of Stack = 4

Bottom of Stack = 5

Wk02.1 Slide 9Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

9

Scott Kristjanson – CMPT 135 – SFU

Popping Items from a Stack

Can only remove the top element of a stack
This is called popping the stack
Use the function name pop() to pop the stack

If we pop our stack then it looks like this:

Pop removed 4 from the stack

4
3
5

pop()

Top of Stack = 3

3
5 Bottom of Stack = 5

Wk02.1 Slide 10Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

10

Scott Kristjanson – CMPT 135 – SFU

Popping from an Empty Stack

Popping the Stack again : 3 is removed
Popping the Stack 3rd time: 5 is removed, the stack is empty
Popping an empty stack is an error!

pop()3
5 5

pop()

Empty Stack

pop() Error!

Wk02.1 Slide 11Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

11

Scott Kristjanson – CMPT 135 – SFU

Using a vector as a Stack

Many different ways to implement a stack
We will implement a stack using a vector
vector was designed with stacks in mind!
push_back and pop_back methods work like a stack

Example:
vector<int> stack; // initially empty

stack.push_back(5); // push 5
stack.push_back(3); // push 3
stack.push_back(4); // push 4

cout <<"top of stack is " << stack.back(); // prints 4

stack.pop_back(); // 4 is popped
stack.pop_back(); // 3 is popped
stack.pop_back(); // 5 is popped

Wk02.1 Slide 12Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

12

Scott Kristjanson – CMPT 135 – SFU

Stacks as a Vector

A Stack is a data structure with three operations:
• push(x) puts x on the top of the stack
• pop() removes the top element of the stack
• peek() returns a copy of the top element without removing it

Can treat stack as a vector and use any vector operation on it

With stacks, normally when pop is called, we want to view the top element
• stack.pop_back() does not return the popped element
• all it does is delete the top of the stack
• so before calling pop_back we usually peek at the top using stack.back()

Wk02.1 Slide 13Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

13

Scott Kristjanson – CMPT 135 – SFU

The Postfix Expression Evaluation Algorithm

How do you evaluate the postfix expression 3 10 + 2 * ?
Here is the complete algorithm in pseudo-code:
stack is initially empty
for each token in the expression do:

if token is a number then
push it onto the stack

else if token is "+" then
pop the top 2 elements of the stack; call them a and b
push a + b onto the stack

else if token is "*" then
pop the top 2 elements of the stack; call them a and b
push a * b onto the stack

else if token is "-" then
pop the top 2 elements of the stack; call them a and b
push a - b onto the stack

else if token is "/" then
pop the top 2 elements of the stack; call them a and b
push a / b onto the stack

end for

Wk02.1 Slide 14Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

14

Scott Kristjanson – CMPT 135 – SFU

The Postfix Expression Evaluation Algorithm

When this loop is done, the value of the expression is the number on the top of the stack
A token is either a number (e.g. 10) or an operator (e.g. *)
For example, the expression 3 10 + 2 * has 5 tokens: three operands and two operators

stack is initially empty
for each token in the expression do:

if token is a number then
push it onto the stack

else if token is "+" then
pop the top 2 elements of the stack; call them a and b
push a + b onto the stack

else if token is "*" then
pop the top 2 elements of the stack; call them a and b
push a * b onto the stack

else if token is "-" then
pop the top 2 elements of the stack; call them a and b
push a - b onto the stack

else if token is "/" then
pop the top 2 elements of the stack; call them a and b
push a / b onto the stack

end for

Wk02.1 Slide 15Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

15

Scott Kristjanson – CMPT 135 – SFU

A Traced Example

Let’s trace through the evaluation of expression: 3 9 + 2 *
• 3 is read: it is pushed onto the stack
• 9 is read: it is pushed onto the stack
• + is read, so 9 and 3 are popped, setting a = 3 and b = 9.

Then a + b, which is 12, is pushed onto the stack
• 2 is read: it is pushed onto the stack
• * is read, so 2 and 12 are popped, setting a = 12 and b = 2

Then a * b, which is 24, is pushed onto the stack
• There are no more tokens, so the value of the postfix expression is

the number on the top of the stack: 24

push(3)

3

push(9) 9

3

token +

pop()
pop()

push(3+9)

12

push(2) 2

12

token *

pop()
pop()

push(2*12)

24
Empty
Stack

Wk02.1 Slide 16Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

16

Scott Kristjanson – CMPT 135 – SFU

PostFix Practice

What do each of the following postfix expressions evaluate to?

1. 4 2 +
2. 4 2 -
3. 4 3 * 5 +
4. 4 3 + 5 *
5. 2 2 * 4 4 * + 4 /

Solutions:
6
2

17
35

5

Wk02.1 Slide 17Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

17

Scott Kristjanson – CMPT 135 – SFU

Writing a C++ Postfix Evaluator

Now that we know how to evaluate postfix expressions, we
are ready to write our program

We will first try to get a simple working version of the algorithm
up and running so we can start using it right away

We will add features one at a time, testing them as we go

Wk02.1 Slide 18Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

18

Scott Kristjanson – CMPT 135 – SFU

Postfix Evaluator Input

The first thing is to be clear about the input to our program:
• numbers and operators are called tokens
• e.g. -8.886 is a token and / is a token
• a postfix expression is thus a sequence of 1 or more tokens
• e.g. the postfix expression 4 3 * 2 + consists of 5 tokens
• we will require that there be at least one space between each token
• so an expression like 4 3*2+ will cause an error in our evaluator

Wk02.1 Slide 19Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

19

Scott Kristjanson – CMPT 135 – SFU

Reading Tokens

Start by writing the basic code for reading tokens and
distinguishing between numbers and operators:
#include "error.h"
#include <iostream>
#include <string>
using namespace std;

string token; // global variable holds both operators and numbers

int main() {
cout << "Postfix expression evaluator\n";
while (cin >> token) {

if (token=="+" || token=="-" || token=="*" || token=="/") {
cout << "'" << token << "' is an operator\n";

} else {
cout << token << " is (perhaps) a number\n";

}
}

}

Wk02.1 Slide 20Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

20

Scott Kristjanson – CMPT 135 – SFU

Adding a Stack

We need to add a stack according to our pseudo-code
Notice the algorithm never stores operators on the stack, only numbers

Since we only ever store numbers on the stack,
we can use a vector of doubles to represent our stack

vector<double> stack; // global variable holds only numbers

Wk02.1 Slide 21Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

21

Scott Kristjanson – CMPT 135 – SFU

Converting a string token to a double

Each Token may be either an operator or a number
So need to read tokens as strings
Need to convert strings like "-3.05" to a double -3.05
Easiest way is to use C++11 function stod():

This prints:

#include <string>

string s = " -5.026 ";
double x = stod(s);
cout << "\"" << s << "\"" << "\n" << x << "\n";

" -5.026 "
-5.026

Wk02.1 Slide 22Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

22

Scott Kristjanson – CMPT 135 – SFU

Evaluating the “+” Operator

Now have enough to evaluate postfix expressions that use +
string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n";
while (cin >> token) {

if (token == "+") {
// pop the top two elements of the stack
// the top element is b, and the one under the top is a
double b = stack.back();
stack.pop_back();
double a = stack.back();
stack.pop_back();
stack.push_back(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";

} else {
stack.push_back(string_to_double(token));

}
}

}

Wk02.1 Slide 23Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

23

Scott Kristjanson – CMPT 135 – SFU

Sample Test Run for + Operator

Test code available through CourSys: wk02.1_Slide22
Sample output: (Keyboard input is Green)
Postfix expression evaluator
1 2 +
tos = 3
4 +
tos = 7
3 -1 -2 1 +
tos = -1
<ctrl-d>
RUN FINISHED; exit value 0; real time: 57s; user: 0ms; system: 0ms

Wk02.1 Slide 24Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

24

Scott Kristjanson – CMPT 135 – SFU

Refactoring Repeated Code Sequences

Create helper functions for code that gets repeated often
Makes code easier to read, understand, and fix
Notice always call stack.back() and stack.pop_back() together

• So it’s a good candidate for a helper function to simplify things a bit
• Let’s create a helper function to combine both operations into one

// remove and return the element of the stack
double pop() {
double tos = stack.back();
stack.pop_back();
return tos;

}

For consistency, lets also simplify things with a similar push helper function:
// put x on the top of the stack
void push(double x) {

stack.push_back(x);
}

Wk02.1 Slide 25Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

25

Scott Kristjanson – CMPT 135 – SFU

Postfix Evaluator – Simplified with Helper Functions

string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n";
while (cin >> token) {

if (token == "+") {
// pop the top two elements of the stack
// the top element is b, and the one under the top is a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to_double(token));

}
}

}

The code for the + operator is now shorter and easier to read!

Wk02.1 Slide 26Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

26

Scott Kristjanson – CMPT 135 – SFU

Implementing the other Operators: - * /

With “+” code working and simplified, time to code the other operators
while (cin >> token) {

if (token == "+") {
// pop the top two elements of the stack
// the top element is b, and the one under the top is a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";

} else if (token == "-") {
double b = pop();
double a = pop();
push(a - b);
cout << "tos = " << stack.back() << "\n";

} else if (token == "*") {
double b = pop();
double a = pop();
push(a * b);
cout << "tos = " << stack.back() << "\n";

} else if (token == "/") {
double b = pop();
double a = pop();
push(a / b);
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to_double(token));

}

Wk02.1 Slide 27Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

27

Scott Kristjanson – CMPT 135 – SFU

Testing the full version of the Postfix Evaluator

This version, Postfix_Eval_v3, works well enough.
It took 60 lines of code to implement this postfix expression evaluator
That’s pretty good!

Can we do better?

Postfix expression evaluator
3 4 *
tos = 12
1 2 + 3 4 + *
tos = 3
tos = 7
tos = 21
<ctrl-d>
RUN FINISHED; exit value 0; real time: 57s; user: 0ms; system: 0ms

Wk02.1 Slide 28Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

28

Scott Kristjanson – CMPT 135 – SFU

Adding more Features

Lets add more features to our calculator
• right now we print the top of the stack after every operator
• that’s useful for debugging but most of the time we usually only care

about the final value of our calculation
• so let’s replace the top-of-stack printing code with the “=" operator
• the “=" operator immediately prints the top of the stack
• let’s add a user prompt “--> ”
• let’s also add a Q command to quit (hitting <ctrl>-d is not intuitive)

Postfix expression evaluator
--> 3 4 * =
tos = 12
--> 1 2 + 3 4 + * =
tos = 21
--> Q
RUN FINISHED; exit value 0; real time: 57s; user: 0ms; system: 0ms

Wk02.1 Slide 29Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

29

Scott Kristjanson – CMPT 135 – SFU

Printing the Top of the Stack

To implement =, re-write the main if-else-if statement
• Eliminate the top-of-stack printing associated with each operator
• Add a check for the new = operator, and print the top-of-stack there

if (token == "+") {
double b = pop();
double a = pop();
push(a + b);

} else if (token == "-") {
double b = pop();
double a = pop();
push(a - b);

} else if (token == "*") {
double b = pop();
double a = pop();
push(a * b);

} else if (token == "/") {
double b = pop();
double a = pop();
push(a / b);

} else if (token == “=") {
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to_double(token));

}

Wk02.1 Slide 30Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

30

Scott Kristjanson – CMPT 135 – SFU

Adding the Q operator to exit the while loop

while loops continue to loop until their boolean expression evaluates to false
To support Q, this must become false when the Q Operator is found
while ((cin >> token) && (token != "Q")) {

if (token == "+") {
double b = pop();
double a = pop();
push(a + b);

} else if (token == "-") {
double b = pop();
double a = pop();
push(a - b);

} else if (token == "*") {
double b = pop();
double a = pop();
push(a * b);

} else if (token == "/") {
double b = pop();
double a = pop();
push(a / b);

} else if (token == "=") {
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to_double(token));

}
} cout << "Bye!" << endl;

&& (token != "Q")

Wk02.1 Slide 31Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

31

Scott Kristjanson – CMPT 135 – SFU

Adding an Input Prompt

A useful feature is to display a text prompt for the user
Need to make three small changes throughout the program:

const string prompt = "--> ";

int main() {
cout << "Postfix expression evaluator\n";
cout << prompt;
while ((cin >> token) && (token != "Q")) {

if (token == "+") {
double b = pop();
double a = pop();
push(a + b);

}
// ... code for -, *, and / ...
} else if (token == "=") {

cout << "tos = " << stack.back() << "\n";
cout << prompt;

} else {
push(string_to_double(token));

}
} cout << "Bye!" << endl;

Wk02.1 Slide 32Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

32

Scott Kristjanson – CMPT 135 – SFU

Summary

Key Things to take away from this presentation:
• While Global variables should be avoided, can be used to simplify complex code
• Stacks are very simple and very power data structures!
• Stacks can be implemented using C++ Vectors
• Helper Functions simplify main() and make the Flow of Control easier to read
• Boolean Expressions control when a while loop breaks out of the loop

Wk02.1 Slide 33Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

33

Scott Kristjanson – CMPT 135 – SFU

References:

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN 978-0-13-359174-3
2. T.Donaldson, Parsing Postfix Expressions, http://www.cs.sfu.ca/CourseCentral/135/tjd/postfix.html
3. B.Fraser, Install VMWare Player & Creating an Ubuntu VM (Part 1), https://youtu.be/TXGREvxPbL4
4. B.Fraser, Configure a VMWare Player VM (Part 2), https://youtu.be/WvWsb5fh2fQ
5. B.Fraser, Installing Netbeans for C++ on Ubuntu VM, https://youtu.be/46SDMxtWTSw

1. Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN 978-0-13-359174-3
2. T.Donaldson, Parsing Postfix Expressions, http://www.cs.sfu.ca/CourseCentral/135/tjd/postfix.html
3. B.Fraser, Install VMWare Player & Creating an Ubuntu VM (Part 1), https://youtu.be/TXGREvxPbL4
4. B.Fraser, Configure a VMWare Player VM (Part 2), https://youtu.be/WvWsb5fh2fQ
5. B.Fraser, Installing Netbeans for C++ on Ubuntu VM, https://youtu.be/46SDMxtWTSw

Wk02.1 Slide 34Slides based on Problem Solving with C++, 9th Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

34

Scott Kristjanson – CMPT 135 – SFU

Time for Questions

