Review: Expressions, Variables, Loops, and more.
ey

Problem Solving with C++

An Expression Evaluator Example [2]
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Case Study : Parsing PostFix Expressions
29

What is an expression?
A series of symbols that return some value when evaluated
o Syntax rules determine if an expression is valid or not
» Operators act on expressions to create new expressions

o C++ has lots of expressions and expression operators
e Arithmetic : 1+3, 3-4, 5*6, 15/10, 15%10, 15/10.0
» Variables : a, b, myVar, Fred, argv
 Logical . a&&Db, al|b (What do these equal if a=1 and b=07?)
* Relational : a<b, a>b, a==b, a!=b, a<b

The Expression Parsing Problem:
* Write a program that evaluates arithmetic expressions
e For example: what does 43.2 / (100 + 5) evaluate to?
* We call such programs an Expression Evaluator
» Evaluating C++ expressions is a tricky problem!
* Reverse Polish Notation (RPN) or PostFix is much simpler!
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PostFix Expressions
I

C++ arithmetic expressions like 5+2 are in Infix notation
» That means that binary operators go in-between the operands

PostFix Expressions place the operator after the operands
e S0 in PostFix, 5+2 is expressed as: 5 2 +

As few simple examples:
12 +is 3, because it means 1+2
47 —is -3, because it means 4-7
34*is 12, because it means 3*4
84 /is 2, because it means 8/4

We will write a PostFix Expression Evaluator in C++
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Evaluating PostFix Expressions

It gets more complex when there is more than one operator.
How would we write the infix expression 1 + 2 * 3 in postfix?

Since * is always evaluated before + with infix, we get this
postfix expression: 2 3 * 1 +

You evaluate starting at the left, and apply an operator to the
two operands immediately proceeding it.

23*1 +
> 61+
> 7

After evaluating an operator, you replace the numbers and
operand with the new value.
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More PostFix Example Expressions
sy |

Now let’'s write the infix expression (1 + 2) * 3 in postfix
This time + is evaluated before * because of the brackets

The postfix expression is:

12+ 3*

It is evaluated In these steps:

12+3*>33*>9

The area of a circle 77T 2 is written: pi * r * r in infix notation

In postfix, it could be writtenaspir*r*orrr*pi*
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Stacks
e

To evaluate a postfix expression, we need to introduce the
iIdea of a stack, which is a simple data structure that lets us
add and remove items at the top of the stack only.

Pictorially, we’ll draw a stack as a box with no top
Here’s an empty stack:

Top of Stack

Bottom of Stack

Empty Stack
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Pushing Items Onto a Stack
Adding an element to a stack is called Pushing an element
Function push() is used to push an element onto the stack

For example:
Here Is what the stack looks like after we push 5 onto it:

Top of Stack =5

5 Bottom of Stack =5

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 7
and Course Notes on Expression Evaluator by Dr. Toby Donaldson



Pushing Always Adds Elements to the Top
8 |

After pushing 3 onto a stack already containing 5:

Top of Stack =3
3
S

Bottom of Stack =5

Whenever you push an element, it becomes the new Top.
Let’s push 4:
/] == T0p of Stack = 4

3
5 “Is Bottom of Stack =5
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Popping Items from a Stack
L9 |

Can only remove the top element of a stack
This is called popping the stack
Use the function name pop () to pop the stack

If we pop our stack then it looks like this:

4 Top of Stack =3
3 pop() > 3
5 5 Bottom of Stack =5

Pop removed 4 from the stack
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Popping from an Empty Stack
10 |

Popping the Stack again : 3 is removed

Popping the Stack 3" time: 5 is removed, the stack is empty

Popping an empty stack is an error!

pop(Q) ) popQ) ) pop() ) Error!

Empty Stack

o1 W
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Using a vector as a Stack
o J

Many different ways to implement a stack

We will implement a stack using a vector

vector was designed with stacks in mind!
push_back and pop back methods work like a stack

Example:
vector<int> stack; // initially empty

stack.push _back(5); // push 5
stack.push _back(3); // push 3
stack.push_back(4); // push 4

cout <<"top of stack 1s " << stack.back(); // prints 4

stack.pop back(); 7/ 4 1s popped
stack.pop back(); 7/ 3 1s popped
stack.pop_back(); 7/ 5 1s popped
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Stacks as a Vector
2 ]

A Stack is a data structure with three operations:
e push(x) puts x on the top of the stack
 pop() removes the top element of the stack
» peek() returns a copy of the top element without removing it

Can treat stack as a vector and use any vector operation on it

With stacks, normally when pop is called, we want to view the top element
» stack.pop_back() does not return the popped element
o all it does is delete the top of the stack
* so before calling pop_back we usually peek at the top using stack.back()

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 12
and Course Notes on Expression Evaluator by Dr. Toby Donaldson



The Postfix Expression Evaluation Algorithm
- 0000000000000

How do you evaluate the postfix expression 310 + 2 * ?
Here is the complete algorithm in pseudo-code:

stack is i1nitially empty
for each token in the expression do:
iIT token 1s a number then
push 1t onto the stack
else 1T token i1s "+" then
pop the top 2 elements of the stack; call them a and b
push a + b onto the stack
else 1T token i1s "*" then
pop the top 2 elements of the stack; call them a and b
push a * b onto the stack
else 1T token 1s "-" then
pop the top 2 elements of the stack; call them a and b
push a - b onto the stack
else 1T token i1s '"/" then
pop the top 2 elements of the stack; call them a and b
push a /7 b onto the stack
end for
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The Postfix Expression Evaluation Algorithm

When this loop is done, the value of the expression is the number on the top of the stack
A token is either a number (e.g. 10) or an operator (e.g. *)
For example, the expression 3 10 + 2 * has 5 tokens: three operands and two operators

stack is i1nitially empty
for each token in the expression do:
iIT token 1s a number then
push 1t onto the stack
else 1T token i1s "+" then
pop the top 2 elements of the
push a + b onto the stack
else 1T token i1s "*" then
pop the top 2 elements of the
push a * b onto the stack
else 1T token 1s "-" then
pop the top 2 elements of the
push a - b onto the stack
else 1T token i1s '"/" then
pop the top 2 elements of the
push a /7 b onto the stack
end for

stack;

stack;

stack;

stack;

call them

call them

call them

call them

a and b

a and b

a and b

a and b
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A Traced Example
I

Let’s trace through the evaluation of expression: 39+ 2 *

» 3is read: it is pushed onto the stack

* 9is read: it is pushed onto the stack

e +is read, so 9 and 3 are popped, settinga =3 and b = 9.
Then a + b, which is 12, is pushed onto the stack

« 2 is read: it is pushed onto the stack

e *is read, so 2 and 12 are popped, settinga=12and b =2
Then a* b, which is 24, is pushed onto the stack

» There are no more tokens, so the value of the postfix expression is
the number on the top of the stack: 24

push(3) ) push(9) )| 9 || token + push(2) | 2 | token *)

3 3 Eggg) 12 12| op 8 24
E ! pop
STaF():tg push(3+9) push(2*12)
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PostFix Practice
I
What do each of the following postfix expressions evaluate to?
Solutions:
42+ 6
42 - 2
43*5+ 17
43+5* 35
22*44*+4] 5

abhowihE
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Writing a C++ Postfix Evaluator
A
Now that we know how to evaluate postfix expressions, we
are ready to write our program
We will first try to get a simple working version of the algorithm
up and running so we can start using it right away
We will add features one at a time, testing them as we go
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Postfix Evaluator Input
N

The first thing Is to be clear about the input to our program:
 numbers and operators are called tokens
* .. -8.886 Is a token and / is a token
 a postfix expression is thus a sequence of 1 or more tokens
 e.g. the postfix expression 4 3 * 2 + consists of 5 tokens
« we will require that there be at least one space between each token
* SO0 an expression like 4 3*2+ will cause an error in our evaluator
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Reading Tokens

Start by writing the basic code for reading tokens and

distinguishing between numbers and operators:

#include "error.h"
#include <iostream>
#include <string>
using namespace std;

string token; // global variable holds both operators and numbers

int main() {

cout << "Postfix expression evaluator\n';
while (cin >> token) {

1T (token=="+" || token=="-"" || token=="*" ]| token=="/") {
cout << """ << token << "" 1S an operator\n';
} else {

cout << token << " i1s (perhaps) a number\n';

}

}
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Adding a Stack
T

We need to add a stack according to our pseudo-code
Notice the algorithm never stores operators on the stack, only numbers

Since we only ever store numbers on the stack,
we can use a vector of doubles to represent our stack

vector<double> stack; // global variable holds only numbers
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Converting a string token to a double
24

Each Token may be either an operator or a number

So need to read tokens as strings

Need to convert strings like "-3.05" to a double -3.05
Easiest way Is to use C++11 function stod():

#include <string>

string s " -5.026
double Xx

COUt << ll\llll << S << ll\llll << Il\n" << X << Il\nll;

This prints:

" -5.026
-5.026
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Evaluating the “+” Operator
24

Now have enough to evaluate postfix expressions that use +

string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n';
while (cin >> token) {
it (token == "+'") {
// pop the top two elements of the stack
// the top element i1s b, and the one under the top is a
double b = stack.back();
stack.pop_back();
double a = stack.back();
stack.pop_back();
stack.push_back(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";
} else {
stack.push_back(string_to_double(token));
by
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Sample Test Run for + Operator

234
Test code available through CourSys: wk02.1 Slide22
Sample output: (Keyboard input is Green)

Postfix expression evaluator

12+

tos = 3

4 +

tos = 7

3-1-21+

tos = -1

<ctrl-d>

RUN FINISHED; exit value 0; real time: 57s; user: Oms; system: Oms
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Refactoring Repeated Code Sequences
.24

Create helper functions for code that gets repeated often
Makes code easier to read, understand, and fix
Notice always call stack.back() and stack.pop back() together

« So it's a good candidate for a helper function to simplify things a bit
 Let’s create a helper function to combine both operations into one

// remove and return the element of the stack

double pop() {
double tos = stack.back();

stack.pop_back(Q);
return tos:

}

For consistency, lets also simplify things with a similar push helper function:

// put x on the top of the stack
void push(double x) {
stack.push_back(x);

}
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Postfix Evaluator — Simplified with Helper Functions
EE

The code for the + operator is now shorter and easier to read!

string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n';
while (cin >> token) {
iIf (token == "+") {

// pop the top two elements of the stack
// the top element 1s b, and the one under the top i1s a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to double(token));
+

}
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Implementing the other Operators: - * /

.24
With “+” code working and simplified, time to code the other operators

while (cin >> token) {

it (token == "+") {
// pop the top two elements of the stack
// the top element is b, and the one under the top i1s a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n"';

} else if (token == "-") {
double b = pop();
double a = pop();

push(a - b);
cout << "tos = " << stack.back() << "\n";
} else if (token == "*") {

double b = pop();

double a = pop();

push(a * b);

cout << "tos = " << stack.back() << "\n"';
} else 1t (token == /") {

double b = pop();

double a = pop();

push(a /7 b);

cout << "tos = " << stack.back() << "\n"';
} else {

push(string_to double(token));




Testing the full version of the Postfix Evaluator
2z f

Postfix expression evaluator
34 *

tos
12
tos
tos = 7

tos 21

<ctrl-d>

RUN FINISHED; exit value O; real time: 57s; user: Oms; system: Oms

12
34+ >
3

i m 4+ 1

This version, Postfix_Eval v3, works well enough.
It took 60 lines of code to implement this postfix expression evaluator
That’s pretty good!

Can we do better?
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Adding more Features

Lets add more features to our calculator
* right now we print the top of the stack after every operator
e that’s useful for debugging but most of the time we usually only care
about the final value of our calculation
350 let’'s replace the top-of-stack printing code with the “=" operator
 the “=" operator immediately prints the top of the stack
e let's add a user prompt “-->"
e let's also add a Q command to quit (hitting <ctrl>-d is not intuitive)

Postfix expression evaluator

--> 3 4 * =

tos = 12

--> 12+ 34+ *=

tos = 21

—_> Q
F

RUN FINISHED; exit value 0O; real time: 57s; user: Oms; system: Oms
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Printing the Top of the Stack
R

To implement =, re-write the main if-else-if statement
 Eliminate the top-of-stack printing associated with each operator
» Add a check for the new = operator, and print the top-of-stack there

1T (token == "+") {
double b = popQ);
double a = popQ);
push(a + b);
} else 1t (token == "-") {
double b = popQ);
double a = popQ);
push(a - b);
} else 1t (token == "*") {
double b = pop(Q);
double a = pop(Q);
push(a * b);
} else 1f (token == /") {
double b = popQ);
double a = popQ);
push(a /7 b);

} else it (token == “=") {

cout << ""tos = " << stack.back() << "\n";
} else {

push(string_to_double(token));
by
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Adding the Q operator to exit the while loop

whi le loops continue to loop until their boolean expression evaluates to false

To support Q, this must become false when the Q Operator is found

while ((cin >> token) && (token != "Q™)) {
i (token == "+") {
double b = pop();
double a = pop();
push(a + b);
} else if (token == "-") {
double b = pop(Q);
double a = pop();
push(a - b);
} else if (token == "*") {
double b = pop(Q);
double a = pop(Q);
push(a * b);
} else 1t (token == "/") {
double b = pop(Q);
double a = pop(Q);
push(a /7 b);

} else i1f (token == "=") {

cout << "tos = " << stack.back() << "\n"';
} else {

push(string _to double(token));
}

} cout << "Bye!" << endl;
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Adding an Input Prompt
B

A useful feature Is to display a text prompt for the user
Need to make three small changes throughout the program:

const string prompt = "--> "

int main() {
cout << "Postfix expression evaluator\n";
cout << prompt;
while ((cin >> token) && (token != "Q'")) {
it (token == "+") {
double b = pop();
double a = pop();
push(a + b);

by
// ... code for -, *, and / ...
} else it (token == "=") {
cout << "tos = " << stack.back() << "\n";
cout << prompt;
} else {

push(string_to double(token));
by

} cout << "Bye!" << endl;
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Summary
24
Key Things to take away from this presentation:

* While Global variables should be avoided, can be used to simplify complex code
» Stacks are very simple and very power data structures!

» Stacks can be implemented using C++ Vectors

» Helper Functions simplify main() and make the Flow of Control easier to read

» Boolean Expressions control when a while loop breaks out of the loop
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Time for Questions
sy
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