Review: Expressions, Variables, Loops, and more.
ey

Problem Solving with C++

An Expression Evaluator Example [2]

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 1
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Case Study : Parsing PostFix Expressions
29

What is an expression?
A series of symbols that return some value when evaluated
o Syntax rules determine if an expression is valid or not
» Operators act on expressions to create new expressions

o C++ has lots of expressions and expression operators
e Arithmetic : 1+3, 3-4, 5*6, 15/10, 15%10, 15/10.0
» Variables : a, b, myVar, Fred, argv
 Logical . a&&Db, al|b (What do these equal if a=1 and b=07?)
* Relational : a<b, a>b, a==b, a!=b, a<b

The Expression Parsing Problem:
* Write a program that evaluates arithmetic expressions
e For example: what does 43.2 / (100 + 5) evaluate to?
* We call such programs an Expression Evaluator
» Evaluating C++ expressions is a tricky problem!
* Reverse Polish Notation (RPN) or PostFix is much simpler!

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 2
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

PostFix Expressions
I

C++ arithmetic expressions like 5+2 are in Infix notation
» That means that binary operators go in-between the operands

PostFix Expressions place the operator after the operands
e S0 in PostFix, 5+2 is expressed as: 5 2 +

As few simple examples:
12 +is 3, because it means 1+2
47 —is -3, because it means 4-7
34*is 12, because it means 3*4
84 /is 2, because it means 8/4

We will write a PostFix Expression Evaluator in C++

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 3
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Evaluating PostFix Expressions

It gets more complex when there is more than one operator.
How would we write the infix expression 1 + 2 * 3 in postfix?

Since * is always evaluated before + with infix, we get this
postfix expression: 2 3 * 1 +

You evaluate starting at the left, and apply an operator to the
two operands immediately proceeding it.

23*1 +
> 61+
> 7

After evaluating an operator, you replace the numbers and
operand with the new value.

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 4
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

More PostFix Example Expressions
sy |

Now let’'s write the infix expression (1 + 2) * 3 in postfix
This time + is evaluated before * because of the brackets

The postfix expression is:

12+ 3*

It is evaluated In these steps:

12+3*>33*>9

The area of a circle 77T 2 is written: pi * r * r in infix notation

In postfix, it could be writtenaspir*r*orrr*pi*

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 5
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Stacks
e

To evaluate a postfix expression, we need to introduce the
iIdea of a stack, which is a simple data structure that lets us
add and remove items at the top of the stack only.

Pictorially, we’ll draw a stack as a box with no top
Here’s an empty stack:

Top of Stack

Bottom of Stack

Empty Stack

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 6
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Pushing Items Onto a Stack
Adding an element to a stack is called Pushing an element
Function push() is used to push an element onto the stack

For example:
Here Is what the stack looks like after we push 5 onto it:

Top of Stack =5

5 Bottom of Stack =5

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 7
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Pushing Always Adds Elements to the Top
8 |

After pushing 3 onto a stack already containing 5:

Top of Stack =3
3
S

Bottom of Stack =5

Whenever you push an element, it becomes the new Top.
Let’s push 4:
/] == T0p of Stack = 4

3
5 “Is Bottom of Stack =5

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 8
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Popping Items from a Stack
L9 |

Can only remove the top element of a stack
This is called popping the stack
Use the function name pop () to pop the stack

If we pop our stack then it looks like this:

4 Top of Stack =3
3 pop() > 3
5 5 Bottom of Stack =5

Pop removed 4 from the stack

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch

Wk02.1 Slide 9
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Popping from an Empty Stack
10 |

Popping the Stack again : 3 is removed

Popping the Stack 3" time: 5 is removed, the stack is empty

Popping an empty stack is an error!

pop(Q)) popQ)) pop()) Error!

Empty Stack

o1 W

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 10
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Using a vector as a Stack
o J

Many different ways to implement a stack

We will implement a stack using a vector

vector was designed with stacks in mind!
push_back and pop back methods work like a stack

Example:
vector<int> stack; // initially empty

stack.push _back(5); // push 5
stack.push _back(3); // push 3
stack.push_back(4); // push 4

cout <<"top of stack 1s " << stack.back(); // prints 4

stack.pop back(); 7/ 4 1s popped
stack.pop back(); 7/ 3 1s popped
stack.pop_back(); 7/ 5 1s popped

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 11
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Stacks as a Vector
2]

A Stack is a data structure with three operations:
e push(x) puts x on the top of the stack
 pop() removes the top element of the stack
» peek() returns a copy of the top element without removing it

Can treat stack as a vector and use any vector operation on it

With stacks, normally when pop is called, we want to view the top element
» stack.pop_back() does not return the popped element
o all it does is delete the top of the stack
* so before calling pop_back we usually peek at the top using stack.back()

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 12
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

The Postfix Expression Evaluation Algorithm
- 0000000000000

How do you evaluate the postfix expression 310 + 2 * ?
Here is the complete algorithm in pseudo-code:

stack is i1nitially empty
for each token in the expression do:
iIT token 1s a number then
push 1t onto the stack
else 1T token i1s "+" then
pop the top 2 elements of the stack; call them a and b
push a + b onto the stack
else 1T token i1s "*" then
pop the top 2 elements of the stack; call them a and b
push a * b onto the stack
else 1T token 1s "-" then
pop the top 2 elements of the stack; call them a and b
push a - b onto the stack
else 1T token i1s '"/" then
pop the top 2 elements of the stack; call them a and b
push a /7 b onto the stack
end for

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 13
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

The Postfix Expression Evaluation Algorithm

When this loop is done, the value of the expression is the number on the top of the stack
A token is either a number (e.g. 10) or an operator (e.g. *)
For example, the expression 3 10 + 2 * has 5 tokens: three operands and two operators

stack is i1nitially empty
for each token in the expression do:
iIT token 1s a number then
push 1t onto the stack
else 1T token i1s "+" then
pop the top 2 elements of the
push a + b onto the stack
else 1T token i1s "*" then
pop the top 2 elements of the
push a * b onto the stack
else 1T token 1s "-" then
pop the top 2 elements of the
push a - b onto the stack
else 1T token i1s '"/" then
pop the top 2 elements of the
push a /7 b onto the stack
end for

stack;

stack;

stack;

stack;

call them

call them

call them

call them

a and b

a and b

a and b

a and b

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

WkO02.1 Slide 14

A Traced Example
I

Let’s trace through the evaluation of expression: 39+ 2 *

» 3is read: it is pushed onto the stack

* 9is read: it is pushed onto the stack

e +is read, so 9 and 3 are popped, settinga =3 and b = 9.
Then a + b, which is 12, is pushed onto the stack

« 2 is read: it is pushed onto the stack

e *is read, so 2 and 12 are popped, settinga=12and b =2
Then a* b, which is 24, is pushed onto the stack

» There are no more tokens, so the value of the postfix expression is
the number on the top of the stack: 24

push(3)) push(9))| 9 || token + push(2) | 2 | token *)

3 3 Eggg) 12 12| op 8 24
E ! pop
STaF():tg push(3+9) push(2*12)

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 15
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

PostFix Practice
I
What do each of the following postfix expressions evaluate to?
Solutions:
42+ 6
42 - 2
43*5+ 17
43+5* 35
22*44*+4] 5

abhowihE

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 16
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Writing a C++ Postfix Evaluator
A
Now that we know how to evaluate postfix expressions, we
are ready to write our program
We will first try to get a simple working version of the algorithm
up and running so we can start using it right away
We will add features one at a time, testing them as we go

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch Wk02.1 Slide 17
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Postfix Evaluator Input
N

The first thing Is to be clear about the input to our program:
 numbers and operators are called tokens
* .. -8.886 Is a token and / is a token
 a postfix expression is thus a sequence of 1 or more tokens
 e.g. the postfix expression 4 3 * 2 + consists of 5 tokens
« we will require that there be at least one space between each token
* SO0 an expression like 4 3*2+ will cause an error in our evaluator

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch Wk02.1 Slide 18
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Reading Tokens

Start by writing the basic code for reading tokens and

distinguishing between numbers and operators:

#include "error.h"
#include <iostream>
#include <string>
using namespace std;

string token; // global variable holds both operators and numbers

int main() {

cout << "Postfix expression evaluator\n';
while (cin >> token) {

1T (token=="+" || token=="-"" || token=="*"]| token=="/") {
cout << """ << token << "" 1S an operator\n';
} else {

cout << token << " i1s (perhaps) a number\n';

}

}

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch

Wk02.1 Slide 19
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Adding a Stack
T

We need to add a stack according to our pseudo-code
Notice the algorithm never stores operators on the stack, only numbers

Since we only ever store numbers on the stack,
we can use a vector of doubles to represent our stack

vector<double> stack; // global variable holds only numbers

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 20
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Converting a string token to a double
24

Each Token may be either an operator or a number

So need to read tokens as strings

Need to convert strings like "-3.05" to a double -3.05
Easiest way Is to use C++11 function stod():

#include <string>

string s " -5.026
double Xx

COUt << ll\llll << S << ll\llll << Il\n" << X << Il\nll;

This prints:

" -5.026
-5.026

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 21
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Evaluating the “+” Operator
24

Now have enough to evaluate postfix expressions that use +

string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n';
while (cin >> token) {
it (token == "+'") {
// pop the top two elements of the stack
// the top element i1s b, and the one under the top is a
double b = stack.back();
stack.pop_back();
double a = stack.back();
stack.pop_back();
stack.push_back(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";
} else {
stack.push_back(string_to_double(token));
by

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 22
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Sample Test Run for + Operator

234
Test code available through CourSys: wk02.1 Slide22
Sample output: (Keyboard input is Green)

Postfix expression evaluator

12+

tos = 3

4 +

tos = 7

3-1-21+

tos = -1

<ctrl-d>

RUN FINISHED; exit value 0; real time: 57s; user: Oms; system: Oms

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 23
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Refactoring Repeated Code Sequences
.24

Create helper functions for code that gets repeated often
Makes code easier to read, understand, and fix
Notice always call stack.back() and stack.pop back() together

« So it's a good candidate for a helper function to simplify things a bit
 Let’s create a helper function to combine both operations into one

// remove and return the element of the stack

double pop() {
double tos = stack.back();

stack.pop_back(Q);
return tos:

}

For consistency, lets also simplify things with a similar push helper function:

// put x on the top of the stack
void push(double x) {
stack.push_back(x);

}

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 24
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Postfix Evaluator — Simplified with Helper Functions
EE

The code for the + operator is now shorter and easier to read!

string token; // global variable
vector<double> stack; // global variable

int main() {
cout << "Postfix expression evaluator\n';
while (cin >> token) {
iIf (token == "+") {

// pop the top two elements of the stack
// the top element 1s b, and the one under the top i1s a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n";

} else {
push(string_to double(token));
+

}

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 25
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Implementing the other Operators: - * /

.24
With “+” code working and simplified, time to code the other operators

while (cin >> token) {

it (token == "+") {
// pop the top two elements of the stack
// the top element is b, and the one under the top i1s a
double b = pop();
double a = pop();
push(a + b);
// print the top of the stack so we can see the result
cout << "tos = " << stack.back() << "\n"';

} else if (token == "-") {
double b = pop();
double a = pop();

push(a - b);
cout << "tos = " << stack.back() << "\n";
} else if (token == "*") {

double b = pop();

double a = pop();

push(a * b);

cout << "tos = " << stack.back() << "\n"';
} else 1t (token == /") {

double b = pop();

double a = pop();

push(a /7 b);

cout << "tos = " << stack.back() << "\n"';
} else {

push(string_to double(token));

Testing the full version of the Postfix Evaluator
2z f

Postfix expression evaluator
34 *

tos
12
tos
tos = 7

tos 21

<ctrl-d>

RUN FINISHED; exit value O; real time: 57s; user: Oms; system: Oms

12
34+ >
3

i m 4+ 1

This version, Postfix_Eval v3, works well enough.
It took 60 lines of code to implement this postfix expression evaluator
That’s pretty good!

Can we do better?

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 27
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Adding more Features

Lets add more features to our calculator
* right now we print the top of the stack after every operator
e that’s useful for debugging but most of the time we usually only care
about the final value of our calculation
350 let’'s replace the top-of-stack printing code with the “=" operator
 the “=" operator immediately prints the top of the stack
e let's add a user prompt “-->"
e let's also add a Q command to quit (hitting <ctrl>-d is not intuitive)

Postfix expression evaluator

--> 3 4 * =

tos = 12

--> 12+ 34+ *=

tos = 21

—_> Q
F

RUN FINISHED; exit value 0O; real time: 57s; user: Oms; system: Oms

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 28
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Printing the Top of the Stack
R

To implement =, re-write the main if-else-if statement
 Eliminate the top-of-stack printing associated with each operator
» Add a check for the new = operator, and print the top-of-stack there

1T (token == "+") {
double b = popQ);
double a = popQ);
push(a + b);
} else 1t (token == "-") {
double b = popQ);
double a = popQ);
push(a - b);
} else 1t (token == "*") {
double b = pop(Q);
double a = pop(Q);
push(a * b);
} else 1f (token == /") {
double b = popQ);
double a = popQ);
push(a /7 b);

} else it (token == “=") {

cout << ""tos = " << stack.back() << "\n";
} else {

push(string_to_double(token));
by

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 29
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Adding the Q operator to exit the while loop

whi le loops continue to loop until their boolean expression evaluates to false

To support Q, this must become false when the Q Operator is found

while ((cin >> token) && (token != "Q™)) {
i (token == "+") {
double b = pop();
double a = pop();
push(a + b);
} else if (token == "-") {
double b = pop(Q);
double a = pop();
push(a - b);
} else if (token == "*") {
double b = pop(Q);
double a = pop(Q);
push(a * b);
} else 1t (token == "/") {
double b = pop(Q);
double a = pop(Q);
push(a /7 b);

} else i1f (token == "=") {

cout << "tos = " << stack.back() << "\n"';
} else {

push(string _to double(token));
}

} cout << "Bye!" << endl;

Scott Kristjanson — CMPT 135 — SFU
Slides based on Problem Solving with C++, 9t Edition, Walter Savitch
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Wk02.1 Slide 30

Adding an Input Prompt
B

A useful feature Is to display a text prompt for the user
Need to make three small changes throughout the program:

const string prompt = "--> "

int main() {
cout << "Postfix expression evaluator\n";
cout << prompt;
while ((cin >> token) && (token != "Q'")) {
it (token == "+") {
double b = pop();
double a = pop();
push(a + b);

by
// ... code for -, *, and / ...
} else it (token == "=") {
cout << "tos = " << stack.back() << "\n";
cout << prompt;
} else {

push(string_to double(token));
by

} cout << "Bye!" << endl;

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch Wk02.1 Slide 31
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Summary
24
Key Things to take away from this presentation:

* While Global variables should be avoided, can be used to simplify complex code
» Stacks are very simple and very power data structures!

» Stacks can be implemented using C++ Vectors

» Helper Functions simplify main() and make the Flow of Control easier to read

» Boolean Expressions control when a while loop breaks out of the loop

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch Wk02.1 Slide 32
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

References:
EN

Walter Savitch, Problem Solving with C++. Pearson, 9th Edition, 2014, ISBN 978-0-13-359174-3
T.Donaldson, Parsing Postfix Expressions, http://www.cs.sfu.ca/CourseCentral/135/tjd/postfix.html
B.Fraser, Install VMWare Player & Creating an Ubuntu VM (Part 1), hitps://youtu.be/TXGREvxPbL4
B.Fraser, Configure a VMWare Player VM (Part 2), hitps://youtu.be/\WvWsb5fh2{O

B.Fraser, Installing Netbeans for C++ on Ubuntu VM, htips://yvoutu.be/4A6SDMxtWTSw

abrwbdE

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 33
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

Time for Questions
sy

Scott Kristjanson — CMPT 135 — SFU

Slides based on Problem Solving with C++, 9t Edition, Walter Savitch WkO02.1 Slide 34
and Course Notes on Expression Evaluator by Dr. Toby Donaldson

