Cmpt 135 Quiz #3 Apr 8" 2016

Quiz #3

Name:
Student Number:

Signature:

Instructions

1. Fill in your Name, Student Number, and signature above.

2. Thisis aclosed book Quiz. No electronic or paper aids permitted.

3. Do not open this test booklet until instructed to do so.

4. Clearly indicate if some part of your work is not to be marked. Add as
many comments as needed to provide a clear response.

5. You may answer the questions in any order you want.

6. Raise your hand if you have a question. The instructor will come over
to assist you.

7. Copying from or communicating with a neighbor or with anyone
directly or electronically will result in both students receiving a zero
and may result in further disciplinary action by the school and or
university administration.

8. The total number of points for this Quiz is 50.

9. You may use the attached Operator Precedence chart and Syntax chart

10. You will have 30 minutes to complete this Quiz.

11. When you are finished, bring your paper and student card to the front
of the room where you will hand in your quiz.

Good luck!

Instructor: Scott Kristjanson Wk14

TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

Total = / 50

Question | Max Mark | Actual Mark
1 5
2 5
3 10
4 10
5 10
6 10
Total 50
Instructor: Scott Kristjanson Wk14

TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

1. Answer the following questions about the tree below. 5 Marks

Node A

O

Node B Node C

N 2

Node D || Node E Node F

a. ldentify the Root of this tree:

b. List the Ancestors of Node E:

c. What is the Height of the Tree?

d. Is the tree Complete?

e. What is the Order of this tree?

2. Complexity 5 Marks

What is the complexity of the following code fragment using
Big-O notation with respect to the value of n?

for (int countl = 0; countl < n; countl++)
for (int count2 = 0; count2 < 2*n; count2++)
cout << count2*count2*count2 << endl;

1 n+2n

1 O(n + 2n)

1 o(n3)

10?9

1 0O(1)

INone of the above

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

3. Recursive Functions - fibonacci 10 Marks

The fibonacci sequence is a famous bit of mathematics, and it happens
to have a recursive definition. The first two values in the sequence are 0
and 1 (essentially 2 base cases). Each subsequent value is the sum of
the previous two values, so the whole sequenceis: 0, 1, 1, 2, 3, 5, 8, 13,
21 and so on. Define a recursive fibonacci(n) method that returns the nth
fibonacci number, with n=0 representing the start of the sequence.

Your function must have the following signature:
int fibonacci (int n);

For example:

fibonacci (0)
fibonacci (1)
fibonacci (2)
fibonacci (3)
fibonacci (4)

Ll
WNRHRO

int fibonacci (int n) {

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

4. Dynamic Arrays as Return Values - tripleChar 10 Marks

Given a C string parameter called str, return a C string where for every
char in the original, there are three chars. Your function will accept a
nullptr or a C string that is terminated by a null (zero) character, and
must return a new dynamic char array that is also terminated by a null
character, and that contains three characters for every character in the
str tripleChar.

Your function must have the following signature:
char* tripleChar (const char str[])

For example:

tripleChar ("The")
tripleChar ("AAbb")
tripleChar ("Hi-There")
tripleChar (nullptr)

"TTThhheee"
"AAAAAADbbDbbbb"
"HHHiii---TTThhheeerrreee"

wwn

Ll

char* tripleChar (const char str[]) {

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

5. Implement Linked List functions below using struct Node 10 Marks

struct Node {
Node *1ink;
int data;
¥
typedef Node* NodePtr;
NodePtr head = nullptr;

Node Node Node
head »] Link »] Link - — nullptr
Data Data Data
(a) Complete the head_insert routine below: 5 Marks

/**

* Creates a new Node, sets is data field to the_number, and adds it as the
* first node pointed to be head.
**/

void head_insert(NodePtr& head, int the_number) {

}

(b)Complete the search routine below: 5 Marks

[AR K K K K K K SR SR SR SR SR SR SRS SO SO SR SO SR SO SR SR SO SR S SR SR SO SR SRR S Sk ok ok

* This function searches the linked list for a node with data == dataToFind

* and returns a pointer to the node if found, and returns nullptr otherwise.
**/

NodePtr search(NodePtr head, int dataToFind) {

}

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

Cmpt 135 Quiz #3 Apr 8" 2016

6. Polymorphism: What output does main() produce? 15 Marks

class Animal {
public:
Animal (string animalType, string sound) ;
virtual void speak() ;
string animalType;
string sound;

|

Animal: :Animal (string animalType, string sound) ({
this->animalType = animalType;

this->sound = sound;
}
class Bee : public Animal{ public: Bee (), };
class Lion : public Animal{ public: Lion(); void speak() override;};
class MtnLion: public Lion { public: void speak () override;};

void Animal ::speak () {cout <<animalType <<"s say "<< sound << endl;}

void Lion : :speak () {cout <<"Big Cats ROAR!" << endl;}
void MtnLion: :speak () {cout <<animalType <<"s purr" << endl;}
Bee ::Bee() : Animal ("Bee", "Buzz Buzz") {}
Lion::Lion(): Animal ("Lion", "Meow") {}

int main(int argc, char** argv) ({
Animal bear ("Bear", "Grrrr!'");
Animal* zoo[4] = {&bear, new Bee, new Lion, new MtnLion};
Animal 1lion *zoo[3];

cout << "Zookeeper, Zookeeper, What do you hear?\n";
for (Animal* animal:zoo) animal->speak() ;
lion.speak() ;

(write the output produced by executing main here)

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

Cmpt 135 Quiz #3

C++ Operator Precedence - Appendix 2

.2 scope resolution operator

. dot operator

-> member selection

[] array indexing

() function call

++ postfix increment operator (placed after the variable)
-- postfix decrement operator (placed after the variable)

++ prefix increment operator (placed before the variable)
-- prefix decrement operator (placed before the variable)
I not

- unary minus

+ unary plus

* dereference

& address of

new

delete

delete(]

sizeof

* multiplication
/ division
% remainder (modulo)

+ addition
- subtraction

<< insertion operator (output)
>> extraction operator (input)

< less than <= less than or equal
> greater than >= greater than or equal

== equal
I= not equal

&& and

|| or

= assignment

+=add and assign ~ -= subtract and assign
*= multiply and assign

/= divide and assign %= modulo and assign

C++ Flow of Control Statement Syntax

Instructor: Scott Kristjanson
TA: Wengiang Peng

Apr

8" 2016

Highest precedence
(UJL"HL‘

A

r

Lowest precedence

(don

e last)

Wk14

Cmpt 135 Quiz #3 Apr 8" 2016

If Statement

Exprossion -7 Statemert
olse

Switch Statement

Swith 0 ()
Switch Case

Switch Case

Expression

e
k(p{ Block Statement }—jj

While Statement

For Statement

For Init For Update

Local Variable Declaration 0—[—;(Statement Expression }—)—u
(e
2SS

Statement Expression
d
A

Instructor: Scott Kristjanson Wk14
TA: Wengiang Peng

