
Cmpt 135 Quiz #2 Mar 18th 2016

1

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

Quiz #2

Name: Solutions__________
Student Number: __________________

Signature: ______________________

Instructions

1. Fill in your Name, Student Number, and signature above.

2. This is a closed book Quiz. No electronic or paper aids permitted.

3. Do not open this test booklet until instructed to do so.

4. Clearly indicate if some part of your work is not to be marked. Add as
many comments as needed to provide a clear response.

5. You may answer the questions in any order you want.

6. Raise your hand if you have a question. The instructor will come over
to assist you.

7. Copying from or communicating with a neighbor or with anyone
directly or electronically will result in both students receiving a zero
and may result in further disciplinary action by the school and or
university administration.

8. The total number of points for this Quiz is 50.

9. You may use the attached Operator Precedence chart and Syntax chart

10. You will have 30 minutes to complete this Quiz.

11. When you are finished, bring your paper and student card to the front
of the room where you will hand in your quiz.

Good luck!

Cmpt 135 Quiz #2 Mar 18th 2016

2

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

Total = ________ / 50

Question Max
Mark Actual Mark

1 10

2 5

3 5

4 10

5 10

6 10

Total 50

Cmpt 135 Quiz #2 Mar 18th 2016

3

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

1. Class Definition Questions – Multiple Choice 10 Marks

CHOOSE 1 OR 2 CORRECT OPTIONS PER QUESTION, not more.

(a) What does the term Stride refer to when discussing arrays?
1) the number of elements in the array
2) the index of the last element in the array
3) the number of bytes used to store an array
4) the number of bytes used to store an element of an array
5) the number of bytes used to store the pointer to the array

(b) The main benefit(s) of encapsulation is/are:
1) reduces system complexity
2) it eliminates the need for inter-module cohesion
3) allows friend functions to access class data via setters and getters
4) makes classes more difficult to program
5) hides implementation details

(c) Benefits of Inheritance include:
1) Reduces encapsulation of the base class and its derived classes
2) Enables software to be written in less time by re-using tested designs
3) Enables a child class method to be overridden by a base class
4) Enables classes to re-use existing methods and data of a base class
5) Enables multiple methods to be overloaded in the class

(d) Method Overloading occurs when:
1) More than one class implement the same method with the same signature
2) A method is invoked too often
3) A class declares a method multiple times with different signatures
4) A method is used to implement more than one thing
5) A method has the same name and parameters but returns different types

(e) Method Overriding occurs when:
1) More than one class implement a method but with different signatures
2) A child method has the same signature as its parent's virtual method
3) A class declares a method multiple times with different signatures
4) A method is used to implement more than one thing
5) A method has the same name and parameters but returns different types

For questions with 2 correct answers:

2 Marks for getting both correct
1 Mark for getting one correct
0 Marks for none correct or more than 2 selected

For questions with 1 correct answer:
2 Marks for getting the correct answer
1 Mark for getting the correct answer plus one wrong answer
0 Marks for none correct or more than 2 selected

Cmpt 135 Quiz #2 Mar 18th 2016

4

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

2. Classes that incorporate dynamic memory can have problems unless
"The Big Three" are implemented. Identify "The Big Three". 5 Marks

 The default constructor

 The delete operator

 The copy constructor

 The assignment operator

 The destructor

3. Complete the class declaration for the SavingsAccount class as depicted
in the UML diagram below. Ensure that the class declaration includes a
default constructor and captures any parent/child relationship. 5 Marks

class SavingsAccount : public BankAccount {

public: // Public member declarations go here

 SavingsAccount();______________________

 void depositInterest();________________

 void withdraw(double amount);__________

private: // Private member declarations go here

 int interestRate;______________________
};

√

√

√

Cmpt 135 Quiz #2 Mar 18th 2016

5

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

4. Dynamic Arrays as Return Values - helloName 10 Marks

Given a C string parameter called name, e.g. "Bob", return a greeting of
the form "Hello Bob!". Your function will accept a nullptr or a C string
that is null terminated, and must return a new dynamic char array that is
also null terminated.

Your function must have the following signature:
char* helloName(const char name[]);

For example:

helloName("Bob") → "Hello Bob!"
helloName("Alice") → "Hello Alice!"
helloName("X") → "Hello X!"
helloName(nullptr) → "Hello !"

char* helloName(const char name[]) {
 // set len=0 in case name equals nullptr

int len = 0;

 // don’t call strlen if name==nullptr
 if (name != nullptr)
 len = strlen(name);

 // Allocate enough chars for retStr
 char *retStr = new char[len+8];

 // Use strcpy because retstr is not yet
 // initialized. strcat may fail if used.
 strcpy(retStr, "Hello ");

 // cat name if it was not nullptr
 if (name != nullptr)
 strcat(retStr, name);

 // Complete answer by adding the "!" string
 strcat(retStr, "!");

 // return completed retStr to caller
 return retStr;
}

Cmpt 135 Quiz #2 Mar 18th 2016

6

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

Alternative solution using pointer arithmetic:

char* helloName(const char name[]) {
 // set len=0 in case name equals nullptr

int len = 0;

 // don’t call strlen if name==nullptr
 if (name != nullptr)
 len = strlen(name);

 // Allocate enough chars for retStr
 char *retStr = new char[len+8];

 // Use strcpy because retstr is not yet
 // initialized. strcat may fail if used.
 strcpy(retStr, "Hello ");

 // cat name if it was not nullptr
 if (name != nullptr)
 strcpy(retStr+6, name);

 // Complete answer by adding the "!" string
 strcpy(retStr+len+6, "!");

 // return completed retStr to caller
 return retStr;
}

Cmpt 135 Quiz #2 Mar 18th 2016

7

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

5. Working with Two-Dimensional Arrays 10 Marks

Write a void function called addToColumn that accepts a two-
dimensional int arr[][5] array, the number of rows in that array, a column
number, and an int value that is to be added to every element in that
column.

Your function must have the following signature:
void addToColumn(int arr[][5], int numRows, int colNum, int numToAdd);

For example:

Given int A[5][5] where:

A = {{1,0,0,0,0},
 {0,1,0,0,0},
 {0,0,1,0,0},
 {0,0,0,1,0},
 {0,0,0,0,1}}

After calling addToColumn:
 addToColumn(A, 5, 2, 1);

Array A will contain:
A = {{1,0,1,0,0},
 {0,1,1,0,0},
 {0,0,2,0,0},
 {0,0,1,1,0},
 {0,0,1,0,1}}

void addToColumn(int arr[][5],int numRows,int colNum,int numToAdd){

// check for bad input before starting
// ***
// For Quiz, no marks lost if did not do check
// ***
if (arr != nullptr)
 if (numRows > 0)
 if ((colNum >= 0) && (colNum < 5))

 // Valid input
 // Loop through each row adding numToAdd
 // *************************************
 for(int row=0; row<numRows; row++)
 arr[row][colNum] += numToAdd;

Cmpt 135 Quiz #2 Mar 18th 2016

8

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

6. Sorting an Array of Doubles 10 Marks

Write a void function called doubleSort that accepts an array of doubles
d and the number of elements in that array num. This function should
sort the elements such that:

d[0] ≤ d[1] ≤ … ≤ d[num-1]

For example:
Given array D[7] where:

D = {6.6, 5.5, 4.4, 3.3, 2.2, 1.1, 0}
After calling:
 doubleSort(D, 7);
Array D will contain:

D = {0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6}

void doubleSort(double d[], int num) {
// Any sort will do, but this is a bubbleSort
// **
// This FOR loop looks to "bubble up" the
// largest double from d[0] to d[i] to d[i].
// i starts with i=num-1, so first pass finds
// the largest number in array and places it
// in d[num-1]. Next loop finds next largest
// and places it in d[num-2], and so on.
for(int i=num-1; i>0; i--)

 // This FOR searches for the largest of
 // those remaining to be bubbled into d[i].

for(int j=0; j<i; j++)

 // Check if numbers are out of order
 // Swap them if they are.
 if (d[j] > d[j+1]) {
 // d[j] and d[j+1] in wrong order
 // So let's swap them!
 // ******************************
 double tmp = d[j];

d[j] = d[j+1];
d[j+1] = tmp;

 }
}

Cmpt 135 Quiz #2 Mar 18th 2016

9

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

C++ Operator Precedence – Appendix 2

C++ Flow of Control Statement Syntax

Cmpt 135 Quiz #2 Mar 18th 2016

10

Instructor: Scott Kristjanson Wk11

TA: Wenqiang Peng

