Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

Lab Exercises wkl12 — Practice with Linked Lists

Required Reading
Chapter 13 - Pointers and Linked Lists
Lecture Slides on Linked Lists, Presented in class wk11

Instructions — PLEASE READ (notice bold and underlined phrases)
Lab Exercise has three parts:

5.
By the completion of the lab, students should be able to:

A. Exercises — Construct a simple Linked List class

B. Submission — Submit your solutions to
You are to work on these lab exercises as individuals.
Submission deadline: Friday Mar 25" at 10:30am

The exercises are presented in sequence so that you gradually advance
with the material.

Before you leave the CSIL labs, make sure that a TA looks at your work
in order to receive your attendance and lab active participation marks.

Labl2 Intended learning outcomes

Define a simple linked list

Write code to display the contents of a linked list

Add new nodes to the head of the list

Add new nodes to the end of the list

Search the list looking for a specific data value

Insert a new node after a node in the middle of the list

Instructor: Scott Kristjanson Wk12

TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

A. Lab Exercises — To be completed by Students Individually

You must complete the exercises and submit your completed linked list
functions into CourSys by Friday. You will create a simple Linked List
based on the course lecture slides from Wk11.3 slides on Pointers and
Linked Lists.

The slides are available in CourSys at:
https://courses.cs.sfu.ca/2016sp-cmpt-135-d1/pages/Wk11.3 PointersLinkedLists.pdf

1. Download files Node.h, Node.cpp, and Lab12 LinkedListTest.cpp

These files are available in CourSys under Lab12. Download them and
create a project consisting of these three files.

Node.h defines the Node struct and the methods used to add new nodes,
search for nodes, and remove nodes. You do not need to modify this file.
It already contains the definition for struct Node and the function
prototypes.

Node .cpp contains stubbed versions of the functions defined in Node.h.
You must implement these functions in this lab exercise. Having
completed this task, you should be ready to attempt the Bonus Question
C2 from Assignment 3. You must submit your final working version of
Node.cpp into CourSys for Lab12.

The majority of these functions and their implementation are described in
the class lecture notes from week 11. Review those slides and translate
the pseudo-code presented into actual code within Node . cpp.

Labl2 LinkedListTest.cpp is a basic test program for verifying that
your functions work as expected. Students are encouraged to enhance
this test program to provide more complete testing of your functions.
You will not submit this file.

Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

2. Head Insert

Implement the head_insert function in Node.cpp as described in this
slide and slides 16-19. Use the new operator to create a new Node from
the heap, update its pointer to point to where head points, then set head
to point to this new node.

Pseudocode for head_insert =
zd |
1. Set temp_ptr to point to a NEW node Adding a Node fo a Linked List
Write data to *temp_ptr (the new node) 1. Set up new node 2. temp_ptr->link = head;
, . . temp_ptr | T tTemp_ptr 12
2. Set temp_ptr's point to the first node !. e W !_ —
. v
3. Set the head pointer = temp_ptr | e [] ‘ e [
—— b —
4. After the function call, temp_ptr is gone - v
but the NEW node is now the first Node 2 -
3. head = temp_ptr; 4, After function call
i temp_ptr | = 1
headL i ! head Y
| 1 __I 15 ‘ f 15
A ——. | bl b
. 1 \
Display 13.3 B B
T | L
Scott Kristjanson — CMPT 135 - SFU
Slides based on Problem Solving with C++, 97 Edition, Walter Savitch Wk05.5 Slide 17
Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

3. Search

Implement the search function in Node.cpp as described in this slide
and slides 22-27.

A Better Refinement of search g
2z y

The search function can be improved further:

here = head;
while (here!=nullptr && here->data!=target)

{

here = here->next;

}

return here;

t

here == matching node if found
here == nullptr if node not found

Scoft Knstianson = CMPT 135 - SFU
gn Edition, Waker Savitch Wk05.5 Shde 27

4. Insert After
Implement the Insert function as described in slides 31-33.

Inserting the New Node
33 |

This code inserts the new node, pointed to by
temp_ptr, after the node pointed to by after_me:

temp ptr->link = after me->link;
after me->link = temp ptr; 1

hoad— 2

after_me = < temp_ptr

Scoft Knstjanson - CMPT 135 - SFU
WhD5.5 Shide 33

Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

5. Insert at End of List

Implement the tail _insert function as described in Node.h. Function
tail_insertinserts a new Node at the end of a linked list.

]f**

*

* tail_insert

#*

Creates a new Node, sets is data field to the_number, and adds it as the
last node in the linked list. To add this to end, one must follow the
Links until it's link equals nullptr. This is the last neode in the linked
list. Hawving found the last node in the list, last_nocde, the new node can be
added to the end of the list by calling:

insert(last_node, the_number);

If the list is empty and head==nullptr, then the new node can be added
instead by calling:
head_insert(NodePtr& head, the number);

Inputs:
head - the Head of the linked list, it points to the first node in the
linked list, or equals nullptr if the linked list is empty.
the _number - the data wvalue of the new node is to be added to the list.

Returns:
Nothing

Side-Effects:
A new Node is allocated from the heap with data=the number and added to
the end of the linked list pointed to be head.

See slides wkll.3 - Pointers and Linked Lists, slides 16-19
https://courses.cs.sfu.ca/2816sp-cmpt-135-d1/pages/Wkll.3 Pointerslinkedlists.pdf

O # O # H O O#H O O OH K O#H R O OH OH O O OH O O OH R R W R

**f

| void tail_insert(NodePtr& head, int the_number);

Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

6. Removing Nodes

Implement the removeNode function as described in Node.h. This
function searches for a Node with a specific data value and removes it
from the linked list.

Implement the removeHead function as described in Node.h. This
function removes the first node from the Linked List and returns the data
value stored in that node to the caller.

Implement the removeTail function as described in Node.h. This
function removes the last node from the Linked List and returns the data
value stored in that node to the caller.

After removing the Node from the list, these routines call the delete
operator to return the memory back to the heap.

7. Output List

Implement the outputList function as described in Node.h. This
function outputs a space separated list of data values starting with the
first Node and ending with the last Node in the list. If the Linked List is
empty, then the word "empty" is returned.

Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

Cmpt 135 Lab Exercises wk12: Practice with Linked Lists Mar 21% 2016

B. Lab Exercise Submission — To be completed by Students

Students are responsible for submitting the requested work files by the
stated deadline for full marks. Since Lab Exercise solutions may be
discussed in class following the submission deadline, |late submissions will
NOT be accepted. It is the student’s responsibility to submit on time. If you
do not have access to CSIL or issues with the computers in CSIL, please
contact the CSIL Help Desk at helpdesk@cs.sfu.ca

Students must work on these exercises individually and submit the set of
files to CourSys. No group should be created for this submission.

1. You must submit your final version of the following file before the
deadline. Students must ensure that all submitted code compiles and is
properly commented and formatted for readability:

° Node.cpp
2. Files are to be submitted into CourSys under Lab12.

Instructor: Scott Kristjanson Wk12
TA: Wengiang Peng Version 1.0

