
Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

1

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

Lab Exercises wk05 – More Debugging with NetBeans

Required Reading
None

Instructions – PLEASE READ (notice bold and underlined phrases)

Lab Exercise has three parts:
A. Lab Demo – Watch Demo, reproduce it, show your TA

B. Exercises – Work on the four lab debug exercises

C. Submission – There Four submissions this week

1. You are to work on these lab exercises as individuals. Each student must
reproduce the demo and show the TA that they have completed Part A.

2. Submission deadline: Friday Feb 5th at 10:30am

3. The exercises are presented in sequence so that you gradually advance
with the material.

4. Before you leave the CSIL labs, make sure that a TA looks at your work
in order to receive your attendance and lab active participation marks.

5. Lab05 Intended learning outcomes

By the completion of the demo, students should be able to use NetBeans to:
 Single step through programs and methods
 Set breakpoints and view program state and internal variables
 Set Command Line parameters through the NetBeans IDE

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

2

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

A. Lab Demo – Presented by TAs, and repeated by Students

Since the projector did not work in Week 04, the TA will repeat the Lab04
demo this week. The TA will only present a quick overview of this material.
Students must observe the overview presented by TA, then complete Part A
on their own. Past A is a repeat of Part A from Week 04; if you already
completed Part A from last week, show your TA your working program and
move on to Part B.

Student must have the TA check off demo program completion by end of
tutorial for full marks. Marks will be awarded for attendance but only partial
marks for incomplete work at the discretion of the TA.

Each student must create a running project based on the demo for full
marks.

Debugging Code with NetBeans

In the Lab04 demo, you learned how to debug code using NetBeans.
NetBeans is a powerful IDE that allows you to monitor what your program
and methods are doing, how they affect variables and state, and use it to
locate bugs. This is a far more powerful and efficient debugging technique
than adding cout statements throughout your code.

In this Demo, we will be using a C++ program that formats text strings as
either left justified, right justified, or centered. You will need the following
file which is available on the CMPT 135 Course website called:

� Lab04Main.cpp (same file as last week)

To get started,

1. Create Project Lab04Justify

Create a project called Lab04Justify and import the source file for
Lab04Main.cpp from the Class website.

 Download Lab04Main.cpp and place it in your Downloads directory, or
some other temporary location.

 Start NetBeans. Make a new project called Lab04Justify.

 Click on 'Source Files' under the Lab04Justify project to reveal main.cpp.
Right-click on it, and select 'Rename', Rename it to Lab04Main.cpp.

 Right click on ‘Lab04Justify’ project in the Package Explorer view and select
‘Properties’ from the menu. Select "C++ Properties" and ensure that the
"C++ Standard" is set to C++11.If it is not already set that way, select it
from the menu on the right hand side of that option.

 From the Ubuntu desktop, open the Filing Cabinet and go to your

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

3

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

Downloads directory. Double click on file Lab04Main.cpp. By default, it will
be opened by GEdit. Click on the window, then press <ctrl-a> to select the
entire file, and <ctrl-c> to copy the entire file to your clipboard.

 Click on your NetBeans window, and double-click on Lab04Main.cpp to
open it in NetBean's main edit window. Click on the window to select it.
Press <ctrl-a><ctrl-v> to over-write the existing file with the contents of
Lab04Main.cpp from your Downloads directory.

 You should now have the contents from your downloaded
Lab04Main.cpp in your Lab04Justify NetBeans project.

 Verify this by clicking on the Green Arrow to "Run Project". Your
program should compile and run. The output should indicate that it is
using default parameters with Width 20 and Justification set to Left.
However, there is a bug in the program and should then report "Error:
No text specified. Exiting...".

 The program is supposed to accept a set of command line parameters
and justify the text according to the displayed Usage statement. If no text
is specified, it is supposed to Left-Justify the default text about the quick
brown fox.

 Instead of using the defaults, it is reporting an error. Your job is to debug
this code and fix it!

2. Open a Debug Perspective

 Up to now, we have been using the NetBeans Run configuration. In this
configuration, we can run and test our program but we cannot set
breakpoints or debug our program very easily.

 The Debug configuration is oriented towards debugging.

 Enter this configuration by either hitting the "Debug Project" button
beside the green "Run" button, or go to the top level menu bar, and select
"Debug Project" from the Debug menu, or simply hit <ctrl-F5>.

 When you enter this mode, nothing much may appear different but it is
using a different configuration. When you enter this mode, it will likely
recompile your code and run it.

 The Output window at the bottom will still contain the output from the
program that just ran but now we will be able to step through the running
program and display variables at different points in the execution. This will
allow us to find the bug that is causing our program to report an error.

3. Executing a Program One Line at a Time

A basic ability of any good IDE is the ability to control the execution of
a program — to be able to stop the program when and where you want
and view its current state. The simplest example of that (from a user

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

4

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

perspective) is line-by-line execution. This is called Single Stepping
through a program,.

a. In the Edit window, scroll through Lab04Main.cpp until you find
main() around line 221. Click on the line number beside where

main() starts and a red square should appear on line 221. This
indicates that you have just set a breakpoint at the start of main.
Do the same thing on the first IF statement after main around line
224. You should have two breakpoints set now.

b. Now when you hit the "Debug Project" button, the program will stop
at the first breakpoint at the start of main(). Because it stopped, there is
no output yet produced. The program is stopped at this breakpoint
waiting for you.

c. Look at the line under main() where Parms is declared. Notice that
there is a green arrow where its line number used to be. This
indicates that this is where the program will resume once you tell it
to continue running.

d. When you are at a break point, you can display the values of any
variables that are in scope, or set more breakpoints, or tell the
debugger to continue until it hits the next breakpoint, or reaches
the end of the program.

e. In bottom window, besides the output window, you will notice there
are three new tabs: the Variables Tab, the Call Stack Tab, and the
Breakpoints Tab. You may also notice that at the very bottom there
is a little orange ball bouncing back and forth: this is telling you
that you are in Debug Mode and that your program is waiting for
you. Go to the Window menu at the top, select Debugging, and you
will see a list of all the various debug windows you can use. We will
stick to these three for now.

f. Click on the Variables window. Notice that the Variables window
shows three variables: parms, argc, argv. At this point in the
program, these are the only variables in scope.

g. This window displays the values of argc and argv which have well
defined values at this point. Parms has not yet been initialized by
our program and so contains uninitialized values.

h. Argc is set to one because only one command line argument was
passed in: the name of the program itself. Argv contains a pointer
to a pointer to the name (because it is an array of pointers to
character arrays - but you do not need to know these details yet!).

i. Click on the Call Stack window. Notice that it only contains one line

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

5

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

containing main() and its two parameters (argc=1, argv=0x7fffff…).
When main() calls ParseCmdParms, it too will appear in this
window along with its parameters. This window can be very useful
for understanding how a function was called when it had a bug.

j. Now click on the Breakpoints window. This contains the set of
breakpoints where you have told your program to stop. At this
point, we have set two: both in Lab04Main.cpp at lines 221 and 224.
Notice that the green arrow is indicated on the first breakpoint.
That is where are program is stopped.

k. Hit the Continue button (or F5 button) to continue execution
until it hits the next breakpoint. Notice that the IF statement on line
224 is now highlighted in green and the green arrow in the
Breakpoints menu has moved to the second break point.

l. If we hit Continue again, the program would run to the end because
there are no more breakpoints. But breakpoints are not the only
way to debug. We can also single step through the program
execution.

m. Let's single step into the ParseCmdParms routine by hitting the

StepInto button (or F7 button). This tells the debugger to
execute the next step in the program. If that step is a procedure call
or function call, it will step into the routine and stop, waiting for the
next command. You may notice that before it enters
ParseCmdParms, it first shows the declaration of struct Parms
which it needs as a parameter for the call to ParseCmdParms. Hit
the StepInto button a several times until you reach the switch
statement.

n. Now look at the Call Stack window once again. It still contains
main(), but now ParseCmdParms has been pushed onto the stack
along with its parameters and their values.

o. Click on the Variables window. Now you can view all the variables
that are in scope within ParseCmdParms. Argc is still one, Argc is
unchanged, but parms has not been initialized thanks to the three
statements before the switch statements.

p. Review the switch statement and the value of argc which is used
by the switch statement. Can you predict where StepInto will go
next? Hit StepInto and see if you are correct.

q. The debugger went to the Case statement where argc == 1 and is
about to do a cout statement.

r. We could StepInto each of those cout statements, but that would
not be interesting. Instead, click on the line number associated

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

6

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

with the return statement to create a new breakpoint there.

s. Now hit the Continue button and the debugger will skip past all
those cout statements and stop at the return statement, just before
ParseCmdParms is about to return to main.

t. In the Variable Windows, notice that value of parms. It has a width
of 20, it is specifying Left justification, and its inputText is set to

something but it is unclear what. Click on the dots icon on the
right, and NetBeans will pop up a new window to show you the rest
of the contents of parms. Can you see what inputText is set to
now? You should see the string value near the end of this display.
No need for you to understand the gory details, just notice that the
field inputText is set to "The quick brown fox jumped over the lazy
dog".

u. Close the window and hit the StepOut button (or the <ctrl-F7>
button). The StepOut button continues running the program until it
completes the current function and returns to the caller where it
then stops once again, waiting for the next debug commend. In
this case, it will continue running until it returns to main() following
the call to ParseCmdParms.

v. Now look at the Variables window and check what the current value
of parms is now. Does it still contain the values that it had within
the ParseCmdParms procedure? If not, then why not?

w. To exit debugging mode, terminate the current debug session by
hitting the Finish Debugger Session Button (or the <shift-F5>
button).

x. You can remove individual breakpoints by click on the red square
where the breakpoint is, and it will be deleted and the line number
redisplayed.

y. To delete all breakpoints, go to the BreakPoint window and right-
click to get the breakpoint menu. From there, you can select
Delete-All to delete all breakpoints, or Disable-All to disable the
breakpoints for now (but you can reenable them later).

z. Once you have deleted (or disabled) all the breakpoints, you can hit
the Continue button to complete the execution of the program to
the end.

4. Fix Lab04Main.cpp so that ParseCmdParms works and show the TA

a. Fix ParseCmdsParms so that parms is set correctly when the
function returns. Try to solve this on your own, or with your
partner. You can ask your TA for help if you get stuck.

b. When you have fixed the program, it should display the following in

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

7

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

the output window when you run it:
Using default parameters:

 Width=20 Justification=Left Text="The quick brown fox jumped over the lazy dog"

The quick brown fox

jumped over the lazy

dog

RUN FINISHED; exit value 0; real time: 0ms; user: 0ms; system: 0ms

 Show your TA this output for partial Participation Marks. You must
also get Command Line Processing working for full Participation
Marks. Keep going!

5. Command Line Arguments

Many programs accept command line arguments when they are invoked.
For example, Lab04Main.cpp justifies the same text string every time in
exactly the same way. We might instead want to use the command line to
pass our own text to be formatted by this program. One might want to
specify the width and justification type as left, right, or center.

a. Compile and test Lab04Main.cpp from the command line.

To call Lab04Main.cpp from the Command Line, you need to build it from
the command line. Using a terminal window, go to your NetBeans folder
with your Lab04Main.cpp program (using the cd command) and compile it
using the following command:

g++ -std=c++11 Lab04Main.cpp -o justify

Once compiled, you can invoke it from the command line. Here is one
example:

justify 20 C "This is the text to fill and justify."

This would produce the following output:
 parameters:
 Width=20 Justification=Center Text="This is the text to fill and justify. "

This is the text to
 fill and justify.

b. Testing Command Line Parameters using NetBeans

To set the command line parameters using NetBeans, select the Project
Lab04 from the project explorer window, and right-click and select
properties.

From the Properties window, select the "Run" category. You will see a
menu of Configuration Options. At the top you can select either the
"Release" configuration or the "Debug" Configuration. Select "Debug" for
running with the debugger (the other option is the configuration used
when you hit the RUN button instead of the DEBUG button).

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

8

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

The first Configuration option under "General" is called "Run Command".
This is where you set the command line parameters within NetBeans.

The Run Command starts with "${OUTPUT_PATH}". Click on this, and add
your command line parameters after this string. Set this configuration
Option as follows: (all on one line)

"${OUTPUT_PATH}" 35 Right Everything should be made as simple as
possible, but no simpler. - Albert Einstein

Run Lab04Main.cpp from NetBeans with the Run Command set as above.
The program should produce the following output:

 parameters:
 Width=35 Justification=Right Text="Everything should be made as simple as possible,
but no simpler. - Albert Einstein "

Everything should be made as simple
 as possible, but no simpler. -
 Albert Einstein

RUN FINISHED; exit value 0; real time: 0ms; user: 0ms; system: 0ms

c. Since PART A is a repeat of week 04, there is no need to submit your
working Lab04Main.cpp to CourSys.

Check in with the TA

Demonstrate to the TA that you are able to pass command line arguments to Lab04Main
and have it right justify your text as shown above, then Continue to Part B if time
remains in your lab session. Otherwise you will have to complete it later.

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

9

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

B. Lab Exercises – To be completed by Students Individually

Now that you know how to use the NetBeans debugger, you will find that
debugging your programs will be much easier. It might even be fun. In this
lab exercise, we will debug some programs in order to get practice using
the NetBeans debugger.

The exercises do not need to be completed by the end of the lab for full
marks, but for full participation marks you must be able to demonstrate to
the TA each of the following:

1. Demonstrate breakpoint and single-step debugging of Lab05Buggy

2. Show that you have found and fixed the bug in Lab05Buggy.cpp

3. Demonstrate breakpoint and single-step debugging of the student’s
own RandomAvg.cpp program from Assignment #1

Students must work and complete the exercises individually.

1. Create a new C++ project called Lab05Buggy

a. Create a new C++ application program called Lab05Buggy

b. Go to the course website “Labs” page and open the file named
Lab05Buggy.cpp, replace all the contents of main.cpp with the contents
of this file using cut and paste.

c. Rename main.cpp to Lab05Buggy.cpp

d. The Lab05Buggy.cpp main method uses a for loop to display the numbers
from 0 to 9 and compute their average to three decimal places. Run the
program to see if it works.

e. You should see the following traceback in the Output window at the bottom
that shows that the program had a run-time error. Notice that it is reporting a
floating point exception:

0 1 2 3 4 5 6 7 8 9

RUN FINISHED; Floating point exception; core dumped;

2. Use the NetBeans Debugger to single step through the program to find the bug
and fix it.

a. To begin single stepping, we need to tell NetBeans that we want
control as soon as the program begins execution. Set a breakpoint on
main at line 31 by click on the line number. It should turn into a red
square .

b. Select Debug Project (or <ctrl-F5>) from the debug menu to start
debugging.

c. Notice that while the breakpoint is set on line 31, code execution stops
on line 32 as indicated by the green shown below. That is because this

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

10

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

is the first executable line of code in the main program. Breakpoints
can only stop where there is code. If no code exists, NetBeans will
stop at the next place where code exists: in this case, that is line 32.

d. Click on the Variables tab to view the list of variables in scope. Notice
variables sum and count. Notice that they are set to zero by default.

e. Notice also that the FOR loop variable i is not currently in the list of
variables. That is because it is not in scope. It is local to the FOR loop.

f. Single Step through the program by hitting the ‘Step Over’ button.

g. Continue Single Stepping until you enter the FOR loop. Notice that i is
now in scope as well.

h. Single step until the FOR loop exits once i == 10. Watch the values of
the variables i, sum and count after each time through the loop.

i. Continue single stepping until you get to line 52 where avg is about to
be computed. Record the values of i, sum, and count.

j. Single step again until you get the exception reported once again.

k. Notice that in debug mode, when an exception occurs a new window
pops up:

l. This window reports that an exception signal was caught by the
debugger. The signal SIGFPE stands for a Floating Point Exception.
Given what you recorded in step i above, what went wrong?

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

11

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

m. The Signal Caught window allows you debug exception errors, or
ignore them and continue running. Hit Forward and Continue, then hit
single-step again and notice you get the same Floating Point
Exception as before.

n. What did you notice about the variables i, sum, and count as you
watched the program run. Did all three get updated through each time
through the for loop?

o. Did you spot the bug? If not, try it again and look at the statements
about to be executed at each step. Understand what each line is
supposed to do and what local variables should get modified.

p. Before you execute each line, look what variable should be modified.
Look at its current value in the Variables window, and then press Step
Over, to execute the statement. Was the variable changed as you
expected? If not, figure out why.

q. There are three statements that get executed in the loop before the
code encounters a run time error on line 32. The statements are:

 for (int i=0; i<=MAX_NUM; i++) { - Line 39: FOR loop adds 1 to i
 sum += i; // Add i to sum - Line 40: Should Add i to sum
 count *= 1; // Add 1 to count - Line 41: Should Add 1 to count
 cout << i << " "; - Line 42: Should output i
 }

r. One of these four lines is causing the problem on line 52. Keep single
stepping through the code until you are about to execute line 52.

s. Before you execute line 52, check that values of sum and count. The
sum of the numbers from 0 to 9 should be 45. Does it have the right
value? If not, then line 40 may be where the bug is. If it does equal 45,
line 40 is not likely the cause of the problem.

t. Now check count. After going through the loop 10 times, count should
equal 10. Does it have the right value? If it does not equal 10, then it
may be the problem. Look at line 41 which modifies count in the loop.
Can you spot the bug?

u. Once you figure out what the bug is. Edit the code to fix it, then single
step through the program again to see if the code is now working as
expected.

v. The computed average of these numbers should be reported as 4.500.
Is this what the program now displays? If not, then line 52
miscalculated avg. Click on line 52 to set a break point there.

w. Clear the breakpoint at the start of main by clicking on red dot on line
31. Stop the current debug session and restart a new one. Execution
will not stop on line 52 just before calculated avg.

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

12

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

x. Look at the values of sum and count. Why would line 52 get this
division wrong and return 4 instead of the correct value of 4.5?

y. Inspect line 51 and the declarations of sum and count. Why is it
computing an int division instead of a floating point one? Fix the bug
by changing the calculation into a floating point operation by changing
the declaration of sum from int to double.

z. Retest the fixed Lab05Buggy.cpp program. Now that you have fixed
Lab05Buggy.cpp so it does not get an exception, run it by hitting the
run button. Does it now compute the correct average?

3. Lab05Buggy2

a. Create a new Project called Lab05Buggy2

b. Paste the Lab05Buggy2.cpp source code from the CourSys Labs page.

c. The intent of this program is that it displays each character of testStr
on a separate line. The default value of this string is "Hello!" which is 6
characters long.

d. Run the program and notice that this program does not crash, but it
displays two extra characters. Why?

e. You used the Eclipse Debugger to find the bug in Lab05Buggy.cpp.
This time we will use Trace statements instead. To do tracing, most
people simply adding calls that send text to cout while debugging, and
then remove these statements once their program is working.

The problem with this method is that once you make another change,
you will need to add in those Trace statements all over again, and then
remove them as well. That is not efficient.

There is a better way. Lab05Buggy2 has Trace statements already in
place but they are inactive: nothing gets printed when you run it. Why?
Look at line 24 where the following boolean is defined:

#define Want_DebugStatements false

Using a #define'd boolean is an excellent way of controlling Trace
statements so you do not need to constantly add them in, then
comment them out, and so forth. By setting this to true, the trace
statements get executed and displayed. Setting it back to false results
in no trace statements getting executed or printed.

f. Good Trace statements can do more than print information; they can
also test assertions and detect errors. Edit line 24 and change the value
of this boolean to true. Run the program now to see the Trace output
is displayed as it runs.

The Trace statements have not only provided Trace information, they
have detected the bug. Fix the bug by changing line 37 so that it uses

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

13

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

"testStr.length()" instead of "sizeof(testStr)".

g. Rerun the program to verify that it no longer has a run-time error and
that the Trace statements no longer detect an error.

h. Set the Want_DebugStatements boolean back to false and rerun the
program to verify that it is working correctly.

i. If you use Trace statements, consider using this convention of having a
boolean control whether the Trace is displayed or not. It will save you a
lot of time during your debugging sessions.

j. So what was the bug on line 37?

k. "testStr.length()" is invokes the length() method for the testStr string
object and returns the number of characters in the string. Many new
C++ programmers mistakenly use "sizeof(testStr)" - this returns the
number of bytes needed for the POINTER to the testStr object. Pointers
are 8 bytes (64 bits), so in this case sizeof returns 8 regardless of how
many characters are in the string. Tip: Use the .length() for strings.

4. Lab05Buggy3

a. Create a new Project called Lab05Buggy3

b. Paste in the Lab05Buggy3.cpp source code from CourSys Labs page.

c. This program does a simple computation using doubles that results in the
value 10.0 and stores the value in the double variable x. It then compares X
with the constant 10.0 using the helper function equalDoubles() to verify that
everything worked as expected.

d. Run this program and you will see that the wrong output is displayed. This
program is using doubles to do some very simple math and comparisons.
One would expect it to work, but it doesn't!

e. Use the Eclipse Debugger or Trace statements to determine what is wrong
with the floating point comparison within the if statement and fix the bug.

f. For a hint, read about comparing Doubles at Stack Exchange here:
 http://stackoverflow.com/questions/18971533/c-comparison-of-two-double-values-not-working-properly

g. Fix the helper function to compare two doubles accord to the solution
provided by this website. The helper function should return true if the two
doubles are within a tolerance of Epsilon.

h. Rerun the code to verify that the if statement works correctly and submit the
working program into CourSys.

5. Lab05AnimalData

a. Create a new Project called Lab05AnimalData

b. Paste in Lab05AnimalData.cpp source code from the CourSys.

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

14

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

c. This copy of AnimalData is based on our partially completed
AnimalData class. The class now declares settings and getters for
private member variables AnimalType and Sound.

d. Member functions have defined for these getters and setters but they
are currently just stubs.

e. Review functions InputAnimal and OutputAnimal. They worked last
Friday when AnimalType and sound were public. Now that these
member variables are properly encapsulated as private member
variables, these functions need to use getters and setters to work.

f. Run the program and notice that the program gets aborted with a core
dump and an invalid pointer exception. That's not good. Let's use
NetBeans debugger to figure out why.

g. Set a breakpoint at the start of main on line 147. Type <ctrl-F5> to run
the debugger. It will stop at the breakpoint on line 150 since this is
where main's executable code starts.

h. While at the breakpoint, click on the Variables tab at the bottom of the
NetBeans window. Notice that there are three AnimalData object
variables in scope, These match the three declared within main: bear,
bee, and Lion.

i. In the variables window, click on bear to view its members variables.
Click on its AnimalType, then click on _M_p which is where the
charactgers for the string are stored. Notice that it contains no valid
characters. This is because the default constructor has not been called
yet for bear.

j. Now hit the Step Over button to allow bear's default constructor to be

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

15

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

called. Look at _M_p again and you will see that it points to the
characters "Worm" which is the default AnimalType string set by the
default constructor.

k. Continue stepping to the program until you get to the first call to the
OutputAnimal function on line 156. We are about to call OutputAnimal
with object bear. This is where the program will crash.

l. Hit the Step-Into button (F7) until you step into the call to function
OutputAnimal.

m. Within OutputAnimal, there is only one local variable in scope: animal

n. Click on the Variables window to view the contents of animal. Check its
AnimalType _M_p value. Is it still worm?

o. So the values of Bear have been passed into OutputAnimal as a copy
parameters into the object "animal". Looks good so far.

p. Step-Into the call to getAnimalType() on line 92. Now the only local
variable in scope is called "this". This represents the object whose
member function is being invoked. Explore it through the Variables
window and verify that AnimalType._M_dataplus._M_p points to the
string "Worm" as we expected.

q. Notice that getAnimalType contains no code. That's the problem! It is
supposed to return a string value by returning the private member
variable AnimalType. Since it does not do this, the caller will get an
invalid pointer to a random piece of memory. Verify this by hitting the

Step-Out button to return to the invoking function. Continue to
single step through the code until you hit the Signal Caught pop-up
window. Hit Forward and Contine and you will see random characters
displayed on your screen plus an "invalid pointer" error.

r. You will need to implement these four getter and setting functions to fix
this bug. To get you started, here is the implementation for
getAnimalType:

s. Implement the four incomplete getters and setters and validate that it
now runs as shown in class.

Cmpt 135 Lab Exercises wk05: More Debugging with NetBeans Feb 1st 2016

16

Instructor: Scott Kristjanson Wk05

TA: Wenqiang Peng Version 1.1

C. Lab Exercise Submission – To be completed by Students

Students are responsible for submitting the requested work files by the
stated deadline for full marks. Since Lab Exercise solutions may be
discussed in class following the submission deadline, late submissions will
NOT be accepted. It is the student’s responsibility to submit on time. If you
do not have access to CSIL or issues with the computers in CSIL, please
contact the CSIL Help Desk at helpdesk@cs.sfu.ca

Students must work on these exercises individually and submit the set of
files to CourSys. No group should be created for this submission.

1. You must submit your final version of the following file before the
deadline. Students must ensure that all submitted code compiles and is
properly commented and formatted for readability:

 Lab05AnimalData.cpp
 Lab05Buggy.cpp
 Lab05Buggy2.cpp
 Lab05Buggy3.cpp

2. Files are to be submitted into CourSys under Lab05. Do NOT create a
group name for this submission, submit individually.

